BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 10958633)

  • 1. Alfresco--a workbench for comparative genomic sequence analysis.
    Jareborg N; Durbin R
    Genome Res; 2000 Aug; 10(8):1148-57. PubMed ID: 10958633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GATA: a graphic alignment tool for comparative sequence analysis.
    Nix DA; Eisen MB
    BMC Bioinformatics; 2005 Jan; 6():9. PubMed ID: 15655071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SeqHelp: a program to analyze molecular sequences utilizing common computational resources.
    Lee MK; Lynch ED; King MC
    Genome Res; 1998 Mar; 8(3):306-12. PubMed ID: 9521933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GenoMiner: a tool for genome-wide search of coding and non-coding conserved sequence tags.
    Castrignanò T; De Meo PD; Grillo G; Liuni S; Mignone F; Talamo IG; Pesole G
    Bioinformatics; 2006 Feb; 22(4):497-9. PubMed ID: 16267081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CGAT: a comparative genome analysis tool for visualizing alignments in the analysis of complex evolutionary changes between closely related genomes.
    Uchiyama I; Higuchi T; Kobayashi I
    BMC Bioinformatics; 2006 Oct; 7():472. PubMed ID: 17062155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refined repetitive sequence searches utilizing a fast hash function and cross species information retrievals.
    Reneker J; Shyu CR
    BMC Bioinformatics; 2005 May; 6():111. PubMed ID: 15869708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ESTMAP: a system for expressed sequence tags mapping on genomic sequences.
    Milanesi L; Rogozin IB
    IEEE Trans Nanobioscience; 2003 Jun; 2(2):75-8. PubMed ID: 15382662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paircomp, FamilyRelationsII and Cartwheel: tools for interspecific sequence comparison.
    Brown CT; Xie Y; Davidson EH; Cameron RA
    BMC Bioinformatics; 2005 Mar; 6():70. PubMed ID: 15790396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BioViews: Java-based tools for genomic data visualization.
    Helt GA; Lewis S; Loraine AE; Rubin GM
    Genome Res; 1998 Mar; 8(3):291-305. PubMed ID: 9521932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HomologMiner: looking for homologous genomic groups in whole genomes.
    Hou M; Berman P; Hsu CH; Harris RS
    Bioinformatics; 2007 Apr; 23(8):917-25. PubMed ID: 17308341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinformatics for the 'bench biologist': how to find regulatory regions in genomic DNA.
    Nardone J; Lee DU; Ansel KM; Rao A
    Nat Immunol; 2004 Aug; 5(8):768-74. PubMed ID: 15282556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mulan: multiple-sequence local alignment and visualization for studying function and evolution.
    Ovcharenko I; Loots GG; Giardine BM; Hou M; Ma J; Hardison RC; Stubbs L; Miller W
    Genome Res; 2005 Jan; 15(1):184-94. PubMed ID: 15590941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of common k-mers for whole genome sequences using SSB-tree.
    Choi JH; Cho HG
    Genome Inform; 2002; 13():30-41. PubMed ID: 14571372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and assessment of a fast algorithm for identifying specific probes for human and mouse genes.
    Chang PC; Peck K
    Bioinformatics; 2003 Jul; 19(11):1311-7. PubMed ID: 12874041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing the Statistical Fate of Paralogous and Orthologous Sequences.
    Massip F; Sheinman M; Schbath S; Arndt PF
    Genetics; 2016 Oct; 204(2):475-482. PubMed ID: 27474728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence assembly with CAFTOOLS.
    Dear S; Durbin R; Hillier L; Marth G; Thierry-Mieg J; Mott R
    Genome Res; 1998 Mar; 8(3):260-7. PubMed ID: 9521929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome.
    Stanke M; Tzvetkova A; Morgenstern B
    Genome Biol; 2006; 7 Suppl 1(Suppl 1):S11.1-8. PubMed ID: 16925833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovering motifs in ranked lists of DNA sequences.
    Eden E; Lipson D; Yogev S; Yakhini Z
    PLoS Comput Biol; 2007 Mar; 3(3):e39. PubMed ID: 17381235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A predictive model for identifying mini-regulatory modules in the mouse genome.
    Yaragatti M; Sandler T; Ungar L
    Bioinformatics; 2009 Feb; 25(3):353-7. PubMed ID: 19052060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.