These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 10958780)

  • 1. Structure of yeast poly(A) polymerase alone and in complex with 3'-dATP.
    Bard J; Zhelkovsky AM; Helmling S; Earnest TN; Moore CL; Bohm A
    Science; 2000 Aug; 289(5483):1346-9. PubMed ID: 10958780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trf4 and Trf5 proteins of Saccharomyces cerevisiae exhibit poly(A) RNA polymerase activity but no DNA polymerase activity.
    Haracska L; Johnson RE; Prakash L; Prakash S
    Mol Cell Biol; 2005 Nov; 25(22):10183-9. PubMed ID: 16260630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization.
    Fairman JW; Wijerathna SR; Ahmad MF; Xu H; Nakano R; Jha S; Prendergast J; Welin RM; Flodin S; Roos A; Nordlund P; Li Z; Walz T; Dealwis CG
    Nat Struct Mol Biol; 2011 Mar; 18(3):316-22. PubMed ID: 21336276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domain-level rocking motion within a polymerase that translocates on single-stranded nucleic acid.
    Li H; Li C; Zhou S; Poulos TL; Gershon PD
    Acta Crystallogr D Biol Crystallogr; 2013 Apr; 69(Pt 4):617-24. PubMed ID: 23519670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the E.coli poly(A) polymerase: nucleotide specificity, RNA-binding affinities and RNA structure dependence.
    Yehudai-Resheff S; Schuster G
    Nucleic Acids Res; 2000 Mar; 28(5):1139-44. PubMed ID: 10666455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Posttranslational phosphorylation and ubiquitination of the Saccharomyces cerevisiae Poly(A) polymerase at the S/G(2) stage of the cell cycle.
    Mizrahi N; Moore C
    Mol Cell Biol; 2000 Apr; 20(8):2794-802. PubMed ID: 10733582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary crystallographic analysis of a polyadenylate synthase from Megavirus.
    Lartigue A; Jeudy S; Bertaux L; Abergel C
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Jan; 69(Pt 1):53-6. PubMed ID: 23295487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for dimerization and activity of human PAPD1, a noncanonical poly(A) polymerase.
    Bai Y; Srivastava SK; Chang JH; Manley JL; Tong L
    Mol Cell; 2011 Feb; 41(3):311-20. PubMed ID: 21292163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of poly(A) polymerase: structure of the enzyme-MgATP-RNA ternary complex and kinetic analysis.
    Balbo PB; Bohm A
    Structure; 2007 Sep; 15(9):1117-31. PubMed ID: 17850751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural variation in the plant polyadenylation complex.
    Zhou L; Li K; Hunt AG
    Front Plant Sci; 2023; 14():1303398. PubMed ID: 38317838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fission yeast poly(A) polymerase active site mutation Y86D alleviates the
    Garg A; Schwer B; Shuman S
    RNA; 2023 Nov; 29(11):1738-1753. PubMed ID: 37586723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic insights into RNA surveillance by the canonical poly(A) polymerase Pla1 of the MTREC complex.
    Soni K; Sivadas A; Horvath A; Dobrev N; Hayashi R; Kiss L; Simon B; Wild K; Sinning I; Fischer T
    Nat Commun; 2023 Feb; 14(1):772. PubMed ID: 36774373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Birth of a poly(A) tail: mechanisms and control of mRNA polyadenylation.
    Rodríguez-Molina JB; Turtola M
    FEBS Open Bio; 2023 Jul; 13(7):1140-1153. PubMed ID: 36416579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Systematic Review of the Biological Effects of Cordycepin.
    Radhi M; Ashraf S; Lawrence S; Tranholm AA; Wellham PAD; Hafeez A; Khamis AS; Thomas R; McWilliams D; de Moor CH
    Molecules; 2021 Sep; 26(19):. PubMed ID: 34641429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics in Fip1 regulate eukaryotic mRNA 3' end processing.
    Kumar A; Yu CWH; Rodríguez-Molina JB; Li XH; Freund SMV; Passmore LA
    Genes Dev; 2021 Nov; 35(21-22):1510-1526. PubMed ID: 34593603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanism for the interaction between human CPSF30 and hFip1.
    Hamilton K; Tong L
    Genes Dev; 2020 Dec; 34(23-24):1753-1761. PubMed ID: 33122294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FAM46B is a prokaryotic-like cytoplasmic poly(A) polymerase essential in human embryonic stem cells.
    Hu JL; Liang H; Zhang H; Yang MZ; Sun W; Zhang P; Luo L; Feng JX; Bai H; Liu F; Zhang T; Yang JY; Gao Q; Long Y; Ma XY; Chen Y; Zhong Q; Yu B; Liao S; Wang Y; Zhao Y; Zeng MS; Cao N; Wang J; Chen W; Yang HT; Gao S
    Nucleic Acids Res; 2020 Mar; 48(5):2733-2748. PubMed ID: 32009146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic insights into mRNA 3'-end processing.
    Kumar A; Clerici M; Muckenfuss LM; Passmore LA; Jinek M
    Curr Opin Struct Biol; 2019 Dec; 59():143-150. PubMed ID: 31499460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Proton Transfer on Mutations.
    Srivastava R
    Front Chem; 2019; 7():536. PubMed ID: 31497591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function and Regulation of Human Terminal Uridylyltransferases.
    Yashiro Y; Tomita K
    Front Genet; 2018; 9():538. PubMed ID: 30483311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.