These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 10958917)
1. Color-opponent receptive fields derived from independent component analysis of natural images. Tailor DR; Finkel LH; Buchsbaum G Vision Res; 2000; 40(19):2671-6. PubMed ID: 10958917 [TBL] [Abstract][Full Text] [Related]
2. Spatiochromatic statistics of natural scenes: first- and second-order information and their correlational structure. Johnson AP; Kingdom FA; Baker CL J Opt Soc Am A Opt Image Sci Vis; 2005 Oct; 22(10):2050-9. PubMed ID: 16277276 [TBL] [Abstract][Full Text] [Related]
3. Independent component analysis applied to feature extraction from colour and stereo images. Hoyer PO; Hyvärinen A Network; 2000 Aug; 11(3):191-210. PubMed ID: 11014668 [TBL] [Abstract][Full Text] [Related]
4. The "independent components" of natural scenes are edge filters. Bell AJ; Sejnowski TJ Vision Res; 1997 Dec; 37(23):3327-38. PubMed ID: 9425547 [TBL] [Abstract][Full Text] [Related]
5. Color vision mechanisms in monkey striate cortex: dual-opponent cells with concentric receptive fields. Michael CR J Neurophysiol; 1978 May; 41(3):572-88. PubMed ID: 96222 [TBL] [Abstract][Full Text] [Related]
6. Double-gabor filters are independent components of small translation-invariant image patches. Saremi S; Sejnowski TJ; Sharpee TO Neural Comput; 2013 Apr; 25(4):922-39. PubMed ID: 23339617 [TBL] [Abstract][Full Text] [Related]
7. Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex. van Hateren JH; Ruderman DL Proc Biol Sci; 1998 Dec; 265(1412):2315-20. PubMed ID: 9881476 [TBL] [Abstract][Full Text] [Related]
8. Spatial and temporal properties of cone signals in alert macaque primary visual cortex. Conway BR; Livingstone MS J Neurosci; 2006 Oct; 26(42):10826-46. PubMed ID: 17050721 [TBL] [Abstract][Full Text] [Related]
9. Spatiochromatic receptive field properties derived from information-theoretic analyses of cone mosaic responses to natural scenes. Doi E; Inui T; Lee TW; Wachtler T; Sejnowski TJ Neural Comput; 2003 Feb; 15(2):397-417. PubMed ID: 12590812 [TBL] [Abstract][Full Text] [Related]
10. Is sparse and distributed the coding goal of simple cells? Zhao L Biol Cybern; 2004 Dec; 91(6):408-16. PubMed ID: 15597179 [TBL] [Abstract][Full Text] [Related]
11. Independent components of color natural scenes resemble V1 neurons in their spatial and color tuning. Caywood MS; Willmore B; Tolhurst DJ J Neurophysiol; 2004 Jun; 91(6):2859-73. PubMed ID: 14749316 [TBL] [Abstract][Full Text] [Related]
12. Spatiochromatic properties of natural images and human vision. Párraga CA; Troscianko T; Tolhurst DJ Curr Biol; 2002 Mar; 12(6):483-7. PubMed ID: 11909534 [TBL] [Abstract][Full Text] [Related]
13. Colour and brightness coding in the central nervous system: theoretical aspects and visual evoked potentials to homogeneous red and green stimuli. Paulus WM; Hömberg V; Cunningham K; Halliday AM Proc R Soc Lond B Biol Sci; 1986 Feb; 227(1246):53-66. PubMed ID: 2870500 [TBL] [Abstract][Full Text] [Related]
14. Spatial properties of red-green and yellow-blue perceptual opponent-color response. Takahashi S; Ejima Y Vision Res; 1984; 24(9):987-94. PubMed ID: 6506487 [TBL] [Abstract][Full Text] [Related]
15. Paucity of chromatic linear motion detectors in macaque V1. Horwitz GD; Albright TD J Vis; 2005 Jun; 5(6):525-33. PubMed ID: 16097865 [TBL] [Abstract][Full Text] [Related]
16. Boundary detection using double-opponency and spatial sparseness constraint. Kai-Fu Yang ; Shao-Bing Gao ; Ce-Feng Guo ; Chao-Yi Li ; Yong-Jie Li IEEE Trans Image Process; 2015 Aug; 24(8):2565-78. PubMed ID: 25910090 [TBL] [Abstract][Full Text] [Related]
17. Independence of color and luminance edges in natural scenes. Hansen T; Gegenfurtner KR Vis Neurosci; 2009; 26(1):35-49. PubMed ID: 19152717 [TBL] [Abstract][Full Text] [Related]
18. Hue scaling of isoluminant and cone-specific lights. De Valois RL; De Valois KK; Switkes E; Mahon L Vision Res; 1997 Apr; 37(7):885-97. PubMed ID: 9156186 [TBL] [Abstract][Full Text] [Related]
19. V1-based modeling of discrimination between natural scenes within the luminance and isoluminant color planes. To MPS; Tolhurst DJ J Vis; 2019 Jan; 19(1):9. PubMed ID: 30650432 [TBL] [Abstract][Full Text] [Related]
20. Chromatic aberration and the roles of double-opponent and color-luminance neurons in color vision. Vladusich T Neural Netw; 2007 Mar; 20(2):153-5. PubMed ID: 17182217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]