These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 10958944)
1. Gains and losses of DNA sequences in childhood brain tumors analyzed by comparative genomic hybridization. Shlomit R; Ayala AG; Michal D; Ninett A; Frida S; Boleslaw G; Gad B; Gideon R; Shlomi C Cancer Genet Cytogenet; 2000 Aug; 121(1):67-72. PubMed ID: 10958944 [TBL] [Abstract][Full Text] [Related]
2. Extensive genomic abnormalities in childhood medulloblastoma by comparative genomic hybridization. Reardon DA; Michalkiewicz E; Boyett JM; Sublett JE; Entrekin RE; Ragsdale ST; Valentine MB; Behm FG; Li H; Heideman RL; Kun LE; Shapiro DN; Look AT Cancer Res; 1997 Sep; 57(18):4042-7. PubMed ID: 9307291 [TBL] [Abstract][Full Text] [Related]
3. [Detection of chromosomal DNA imbalance in medulloblastoma by comparative genomic hybridization]. Sun YJ; Yu SZ; Sun CY; Wang Q; Jin SM; Wu WX; An TL Zhonghua Bing Li Xue Za Zhi; 2010 Sep; 39(9):606-10. PubMed ID: 21092588 [TBL] [Abstract][Full Text] [Related]
4. Genetic aberrations in prostate carcinoma detected by comparative genomic hybridization and microsatellite analysis: association with progression and angiogenesis. Strohmeyer DM; Berger AP; Moore DH; Bartsch G; Klocker H; Carroll PR; Loening SA; Jensen RH Prostate; 2004 Apr; 59(1):43-58. PubMed ID: 14991865 [TBL] [Abstract][Full Text] [Related]
5. Chromosome arm 6q loss is the most common recurrent autosomal alteration detected in primary pediatric ependymoma. Reardon DA; Entrekin RE; Sublett J; Ragsdale S; Li H; Boyett J; Kepner JL; Look AT Genes Chromosomes Cancer; 1999 Mar; 24(3):230-7. PubMed ID: 10451703 [TBL] [Abstract][Full Text] [Related]
7. Comparative genomic hybridization detects many recurrent imbalances in central nervous system primitive neuroectodermal tumours in children. Avet-Loiseau H; Vénuat AM; Terrier-Lacombe MJ; Lellouch-Tubiana A; Zerah M; Vassal G Br J Cancer; 1999 Apr; 79(11-12):1843-7. PubMed ID: 10206302 [TBL] [Abstract][Full Text] [Related]
8. Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping. Bayani J; Zielenska M; Marrano P; Kwan Ng Y; Taylor MD; Jay V; Rutka JT; Squire JA J Neurosurg; 2000 Sep; 93(3):437-48. PubMed ID: 10969942 [TBL] [Abstract][Full Text] [Related]
9. Identification of a novel homozygous deletion region at 6q23.1 in medulloblastomas using high-resolution array comparative genomic hybridization analysis. Hui AB; Takano H; Lo KW; Kuo WL; Lam CN; Tong CY; Chang Q; Gray JW; Ng HK Clin Cancer Res; 2005 Jul; 11(13):4707-16. PubMed ID: 16000565 [TBL] [Abstract][Full Text] [Related]
10. Comparative genomic hybridization in ganglioneuroblastomas. Toraman AD; Keser I; Lüleci G; Tunali N; Gelen T Cancer Genet Cytogenet; 2002 Jan; 132(1):36-40. PubMed ID: 11801306 [TBL] [Abstract][Full Text] [Related]
11. Detection of multiple gains and losses of genetic material in ten glioma cell lines by comparative genomic hybridization. Mohapatra G; Kim DH; Feuerstein BG Genes Chromosomes Cancer; 1995 Jun; 13(2):86-93. PubMed ID: 7542911 [TBL] [Abstract][Full Text] [Related]
12. Comparative genomic hybridization detects specific cytogenetic abnormalities in pediatric ependymomas and choroid plexus papillomas. Grill J; Avet-Loiseau H; Lellouch-Tubiana A; Sévenet N; Terrier-Lacombe MJ; Vénuat AM; Doz F; Sainte-Rose C; Kalifa C; Vassal G Cancer Genet Cytogenet; 2002 Jul; 136(2):121-5. PubMed ID: 12237235 [TBL] [Abstract][Full Text] [Related]
14. Low frequency of chromosomal imbalances in anaplastic ependymomas as detected by comparative genomic hybridization. Scheil S; Brüderlein S; Eicker M; Herms J; Herold-Mende C; Steiner HH; Barth TF; Möller P Brain Pathol; 2001 Apr; 11(2):133-43. PubMed ID: 11303789 [TBL] [Abstract][Full Text] [Related]
15. Chromosomal abnormalities in glioblastoma multiforme tumors and glioma cell lines detected by comparative genomic hybridization. Kim DH; Mohapatra G; Bollen A; Waldman FM; Feuerstein BG Int J Cancer; 1995 Mar; 60(6):812-9. PubMed ID: 7896451 [TBL] [Abstract][Full Text] [Related]
16. Detection of genetic and chromosomal aberrations in medulloblastomas and primitive neuroectodermal tumors with DNA microarrays. Kagawa N; Maruno M; Suzuki T; Hashiba T; Hashimoto N; Izumoto S; Yoshimine T Brain Tumor Pathol; 2006 Apr; 23(1):41-7. PubMed ID: 18095118 [TBL] [Abstract][Full Text] [Related]
17. Molecular cytogenetic quantitation of gains and losses of genetic material from human gliomas. Feuerstein BG; Mohapatra G J Neurooncol; 1995; 24(1):47-55. PubMed ID: 8523075 [TBL] [Abstract][Full Text] [Related]
18. Gene aberrations in childhood brain tumors. Kucerová H; Stejskalová E; Vícha A; Tichý M; Chánová M; Sumerauer D; Koutechký J; Eckschlager T Folia Biol (Praha); 2000; 46(5):187-90. PubMed ID: 11055797 [TBL] [Abstract][Full Text] [Related]
19. Molecular classification of human gliomas using matrix-based comparative genomic hybridization. Roerig P; Nessling M; Radlwimmer B; Joos S; Wrobel G; Schwaenen C; Reifenberger G; Lichter P Int J Cancer; 2005 Oct; 117(1):95-103. PubMed ID: 15880582 [TBL] [Abstract][Full Text] [Related]