These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 10959086)

  • 1. Biotechnological potential of coffee pulp and coffee husk for bioprocesses.
    Pandey A; Soccol CR; Nigam P; Brand D; Mohan R; Roussos S
    Biochem Eng J; 2000 Oct; 6(2):153-162. PubMed ID: 10959086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production and characterization of a new distillate obtained from fermentation of wet processing coffee by-products.
    Lopes ACA; Andrade RP; de Oliveira LCC; Lima LMZ; Santiago WD; de Resende MLV; das Graças Cardoso M; Duarte WF
    J Food Sci Technol; 2020 Dec; 57(12):4481-4491. PubMed ID: 33087961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid state cultivation--an efficient method to use toxic agro-industrial residues.
    Leifa F; Pandey A; Soccol CR
    J Basic Microbiol; 2000; 40(3):187-97. PubMed ID: 10957960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Packed bed column fermenter and kinetic modeling for upgrading the nutritional quality of coffee husk in solid-state fermentation.
    Brand D; Pandey A; Rodriguez-Leon JA; Roussos S; Brand I; Soccol CR
    Biotechnol Prog; 2001; 17(6):1065-70. PubMed ID: 11735442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system.
    Brand D; Pandey A; Roussos S; Soccol CR
    Enzyme Microb Technol; 2000 Jul; 27(1-2):127-133. PubMed ID: 10862912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of coffee pulp and sorghum mixtures in the production of n-demethylases by solid-state fermentation.
    Peña-Lucio EM; Londoño-Hernández L; Ascacio-Valdes JA; Chavéz-González ML; Bankole OE; Aguilar CN
    Bioresour Technol; 2020 Jun; 305():123112. PubMed ID: 32156553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apple pomace: a versatile substrate for biotechnological applications.
    Vendruscolo F; Albuquerque PM; Streit F; Esposito E; Ninow JL
    Crit Rev Biotechnol; 2008; 28(1):1-12. PubMed ID: 18322854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical optimization of bioprocess parameters for enhanced gallic acid production from coffee pulp tannins by Penicillium verrucosum.
    Bhoite RN; Navya PN; Murthy PS
    Prep Biochem Biotechnol; 2013; 43(4):350-63. PubMed ID: 23464918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new alternative use for coffee pulp from semi-dry process to β-glucosidase production by Bacillus subtilis.
    Dias M; Melo MM; Schwan RF; Silva CF
    Lett Appl Microbiol; 2015 Dec; 61(6):588-95. PubMed ID: 26394238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-succinic acid production from coffee husk treated with thermochemical and fungal hydrolysis.
    Dessie W; Zhu J; Xin F; Zhang W; Jiang Y; Wu H; Ma J; Jiang M
    Bioprocess Biosyst Eng; 2018 Oct; 41(10):1461-1470. PubMed ID: 29946744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of alkaline pretreatment of coffee pulp for production of bioethanol.
    Menezes EG; do Carmo JR; Alves JG; Menezes AG; Guimarães IC; Queiroz F; Pimenta CJ
    Biotechnol Prog; 2014; 30(2):451-62. PubMed ID: 24376222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production, statistical optimization and application of endoglucanase from Rhizopus stolonifer utilizing coffee husk.
    Navya PN; Pushpa SM
    Bioprocess Biosyst Eng; 2013 Aug; 36(8):1115-23. PubMed ID: 23223909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oil cakes and their biotechnological applications--a review.
    Ramachandran S; Singh SK; Larroche C; Soccol CR; Pandey A
    Bioresour Technol; 2007 Jul; 98(10):2000-9. PubMed ID: 17023161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing the loading rate of continuous stirred tank reactor for coffee husk and pulp: Effect of trace elements supplement.
    Chala B; Oechsner H; Fritz T; Latif S; Müller J
    Eng Life Sci; 2018 Aug; 18(8):551-561. PubMed ID: 32624935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulase and xylanase production at pilot scale by solid-state fermentation from coffee husk using specialized consortia: The consistency of the process and the microbial communities involved.
    Cerda A; Mejías L; Gea T; Sánchez A
    Bioresour Technol; 2017 Nov; 243():1059-1068. PubMed ID: 28764108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activated carbon prepared from coffee pulp: potential adsorbent of organic contaminants in aqueous solution.
    Gonçalves M; Guerreiro MC; Ramos PH; de Oliveira LC; Sapag K
    Water Sci Technol; 2013; 68(5):1085-90. PubMed ID: 24037160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coffee Pulp, a By-Product of Coffee Production, Modulates Gut Microbiota and Improves Metabolic Syndrome in High-Carbohydrate, High-Fat Diet-Fed Rats.
    Bhandarkar NS; Mouatt P; Majzoub ME; Thomas T; Brown L; Panchal SK
    Pathogens; 2021 Oct; 10(11):. PubMed ID: 34832525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coffee husk waste for fermentation production of mosquitocidal bacteria.
    Poopathi S; Abidha S
    J Econ Entomol; 2011 Dec; 104(6):1816-23. PubMed ID: 22299340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between coffee husk caffeine degradation and respiration of Aspergillus sp. LPBx in solid-state fermentation.
    Brand D; Pandey A; Rodriguez-Leon JA; Roussos S; Brand I; Soccol CR
    Appl Biochem Biotechnol; 2002; 102-103(1-6):169-77. PubMed ID: 12396120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of Coffee Cherry Spirits from
    Blumenthal P; Steger MC; Quintanilla Bellucci A; Segatz V; Rieke-Zapp J; Sommerfeld K; Schwarz S; Einfalt D; Lachenmeier DW
    Foods; 2022 Jun; 11(12):. PubMed ID: 35741872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.