BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 10959411)

  • 61. Expression of iron-related proteins in feline and canine mammary gland reveals unexpected accumulation of iron.
    Marques O; Canadas A; Faria F; Oliveira E; Amorim I; Seixas F; Gama A; Lobo-da-Cunha A; Silva BMD; Porto G; Lopes C
    Biotech Histochem; 2017; 92(8):584-594. PubMed ID: 29172705
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Prolactin, growth hormone, and epidermal growth factor activate Stat5 in different compartments of mammary tissue and exert different and overlapping developmental effects.
    Gallego MI; Binart N; Robinson GW; Okagaki R; Coschigano KT; Perry J; Kopchick JJ; Oka T; Kelly PA; Hennighausen L
    Dev Biol; 2001 Jan; 229(1):163-75. PubMed ID: 11133161
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Treatment of growth hormone excess in dogs with the progesterone receptor antagonist aglépristone.
    Bhatti SF; Duchateau L; Okkens AC; Van Ham LM; Mol JA; Kooistra HS
    Theriogenology; 2006 Sep; 66(4):797-803. PubMed ID: 16497368
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Evidence for a mammogenic role of growth hormone in ewes: effects of growth hormone-releasing factor during artificial induction of lactation.
    Kann G
    J Anim Sci; 1997 Sep; 75(9):2541-9. PubMed ID: 9303474
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Role of growth hormone and insulin-like growth factor-I in mammary development.
    Plaut K; Ikeda M; Vonderhaar BK
    Endocrinology; 1993 Oct; 133(4):1843-8. PubMed ID: 8404627
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Expression and activity of transglutaminase II in spontaneous tumours of dogs and cats.
    Wakshlag JJ; McNeill CJ; Antonyak MA; Boehm JE; Fuji R; Balkman CE; Zgola M; Cerione RA; Page RL
    J Comp Pathol; 2006; 134(2-3):202-10. PubMed ID: 16615935
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Autocrine/paracrine roles of extrapituitary growth hormone and prolactin in health and disease: An overview.
    Harvey S; Martínez-Moreno CG; Luna M; Arámburo C
    Gen Comp Endocrinol; 2015 Sep; 220():103-11. PubMed ID: 25448258
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Prolactin and growth hormone immunoactivity in canine mammary adenomas and adenocarcinomas.
    Bohrer ER; Löhr CV; Kutzler MA
    Reprod Domest Anim; 2017 Apr; 52 Suppl 2():293-297. PubMed ID: 28025846
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Proliferation of endothelial and tumor epithelial cells by progestin-induced vascular endothelial growth factor from human breast cancer cells: paracrine and autocrine effects.
    Liang Y; Hyder SM
    Endocrinology; 2005 Aug; 146(8):3632-41. PubMed ID: 15845615
    [TBL] [Abstract][Full Text] [Related]  

  • 70. In vivo effect of growth hormone on DNA synthesis and expression of milk protein genes in the rabbit mammary gland.
    Zebrowska T; Siadkowska E; Zwierzchowski L; Gajewska A; Kochman K
    J Physiol Pharmacol; 1997 Dec; 48(4):825-37. PubMed ID: 9444628
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Growth hormone suppresses the expression of IGFBP-5, and promotes the IGF-I-induced phosphorylation of Akt in bovine mammary epithelial cells.
    Sakamoto K; Yano T; Kobayashi T; Hagino A; Aso H; Obara Y
    Domest Anim Endocrinol; 2007 May; 32(4):260-72. PubMed ID: 16698222
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Estradiol enhances the stimulatory effect of insulin-like growth factor-I (IGF-I) on mammary development and growth hormone-induced IGF-I messenger ribonucleic acid.
    Ruan W; Catanese V; Wieczorek R; Feldman M; Kleinberg DL
    Endocrinology; 1995 Mar; 136(3):1296-302. PubMed ID: 7867584
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Cell cycle genes in a mouse mammary hyperplasia model.
    Said TK; Medina D
    J Mammary Gland Biol Neoplasia; 2004 Jan; 9(1):81-93. PubMed ID: 15082920
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Klotho and the Growth Hormone/Insulin-Like Growth Factor 1 Axis: Novel Insights into Complex Interactions.
    Rubinek T; Modan-Moses D
    Vitam Horm; 2016; 101():85-118. PubMed ID: 27125739
    [TBL] [Abstract][Full Text] [Related]  

  • 75. RAD51 protein expression is increased in canine mammary carcinomas.
    Klopfleisch R; Schütze M; Gruber AD
    Vet Pathol; 2010 Jan; 47(1):98-101. PubMed ID: 20080488
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The contribution of growth hormone to mammary neoplasia.
    Perry JK; Mohankumar KM; Emerald BS; Mertani HC; Lobie PE
    J Mammary Gland Biol Neoplasia; 2008 Mar; 13(1):131-45. PubMed ID: 18253708
    [TBL] [Abstract][Full Text] [Related]  

  • 77. TGF-beta in mammary development and neoplasia.
    Arteaga CL; Moses HL
    J Mammary Gland Biol Neoplasia; 1996 Oct; 1(4):327-9. PubMed ID: 10887506
    [No Abstract]   [Full Text] [Related]  

  • 78. Steroid receptor coactivator 2: an essential coregulator of progestin-induced uterine and mammary morphogenesis.
    Mukherjee A; Amato P; Craig-Allred D; DeMayo FJ; O'Malley BW; Lydon JP
    Ernst Schering Found Symp Proc; 2007; (1):55-76. PubMed ID: 18540568
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Connecting the Dots: Mammary Gland and Breast Cancer at Single Cell Resolution.
    van Amerongen R; Kordon EC; Koledova Z
    J Mammary Gland Biol Neoplasia; 2021 Mar; 26(1):1-2. PubMed ID: 34125362
    [No Abstract]   [Full Text] [Related]  

  • 80. Growth hormone: a paracrine growth factor in embryonic development?
    Harvey S; Johnson CD; Sharma P; Sanders EJ; Hull KL
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1998 Jun; 119(3):305-15. PubMed ID: 9827003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.