These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 10961)
1. Phosphorus-31 Fourier transform nuclear magnetic resonance study of mononucleotides and dinucleotides. 1. Chemical shifts. Cozzone PJ; Jardetzky O Biochemistry; 1976 Nov; 15(22):4853-9. PubMed ID: 10961 [TBL] [Abstract][Full Text] [Related]
2. Phosphorus-31 Fourier transform nuclear magnetic resonance study of mononucleotides and dinucleotides. 2. Coupling constants. Cozzone PJ; Jardetzky O Biochemistry; 1976 Nov; 15(22):4860-5. PubMed ID: 990248 [TBL] [Abstract][Full Text] [Related]
3. Nuclear magnetic resonance studies of 2'- and 3'-ribonucleotide structures in solution. Davies DB; Danyluk SS Biochemistry; 1975 Feb; 14(3):543-54. PubMed ID: 1111570 [TBL] [Abstract][Full Text] [Related]
4. Conformation of pyridine nucleotides studied by phosphorus-31 and hydrogen-1 fast Fourier transform nuclear magnetic resonance spectroscopy. I. Oxidized and reduced mononucleotides. Sarma RH; Mynott RJ J Am Chem Soc; 1973 Mar; 95(5):1641-9. PubMed ID: 4266012 [No Abstract] [Full Text] [Related]
5. 31-P chemical shifts in phosphate diester monoanions. Bond angle and torsional angle effects. Gorenstein DG; Kar D Biochem Biophys Res Commun; 1975 Aug; 65(3):1073-80. PubMed ID: 239711 [No Abstract] [Full Text] [Related]
6. Association by hydrogen bonding of mononucleotides in aqueous solution. Raszka M; Kaplan NO Proc Natl Acad Sci U S A; 1972 Aug; 69(8):2025-9. PubMed ID: 4506070 [TBL] [Abstract][Full Text] [Related]
7. Interrelation between glycosidic torsion, sugar pucker, and backbone conformation in 5'-beta-nucleotides. A 1H and 31P fast Fourier transform nuclear magnetic resonance investigation of the conformation of 8-aza-5'-beta-adenosine monophosphate and 8-aza-5'-beta-guanosine monophosphate. Lee CH; Evans FE; Sarma RH J Biol Chem; 1975 Feb; 250(4):1290-6. PubMed ID: 1112806 [TBL] [Abstract][Full Text] [Related]
8. Conformation of pyridine nucleotides studied by phosphorus-31 and hydrogen-1 fast fourier transform nuclear magnetic resonance spectroscopy. III. Oxidized and reduced dinucleotides. Sarma RH; Mynott RJ J Am Chem Soc; 1973 Oct; 95(22):7470-80. PubMed ID: 4147828 [No Abstract] [Full Text] [Related]
9. Carbon-13 nuclear-magnetic-resonance spectra of adenine cyclonucleosides and their phosphates. Effects of neighboring groups for elucidation of fine structure of nucleosides and nucleotides. Uesugi S; Tanaka S; Ikehara M Eur J Biochem; 1978 Sep; 90(1):205-12. PubMed ID: 213272 [TBL] [Abstract][Full Text] [Related]
10. 31P nuclear magnetic resonance of phosphonic acid analogues of adenosine nucleotides as functions of pH and magnesium ion concentration. Schliselfeld LH; Burt CT; Labotka RJ Biochemistry; 1982 Jan; 21(2):317-20. PubMed ID: 6896156 [TBL] [Abstract][Full Text] [Related]
11. Conformation of mononucleotides and dinucleoside monophosphates. P[H] and H[H] nuclear Overhauser effects. Hart PA Biophys J; 1978 Dec; 24(3):833-48. PubMed ID: 737288 [TBL] [Abstract][Full Text] [Related]
12. Ionization properties of phosphatidylinositol polyphosphates in mixed model membranes. Kooijman EE; King KE; Gangoda M; Gericke A Biochemistry; 2009 Oct; 48(40):9360-71. PubMed ID: 19725516 [TBL] [Abstract][Full Text] [Related]
13. 31P NMR of phosphate and phosphonate complexes of metalloalkaline phosphatases. Chlebowski JF; Armitage IM; Tusa PP; Coleman JE J Biol Chem; 1976 Feb; 251(4):1207-16. PubMed ID: 2606 [TBL] [Abstract][Full Text] [Related]
15. Nuclear magnetic resonance studies of the solution properties of the antiviral nucleoside, 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide, the coresponding 5'-phosphate, and related triazole nucleosides. Dea P; Schweizer MP; Kreishman GP Biochemistry; 1974 Apr; 13(9):1862-7. PubMed ID: 4840830 [No Abstract] [Full Text] [Related]
16. 31P nuclear magnetic resonance spectra of the thiophosphate analogues of adenine nucleotides; effects of pH and Mg2+ binding. Jaffe EK; Cohn M Biochemistry; 1978 Feb; 17(4):652-7. PubMed ID: 23826 [TBL] [Abstract][Full Text] [Related]
17. Interaction of Mg2+ ions with nucleoside triphosphates by phosphorus magnetic resonance spectroscopy. Son TD; Roux M; Ellenberger M Nucleic Acids Res; 1975 Jul; 2(7):1101-10. PubMed ID: 239391 [TBL] [Abstract][Full Text] [Related]
18. Conformational studies of some 2':3'-cyclic mononucleotides in solution by different nuclear-magnetic-resonance methods. Geraldes CF; Williams RJ Eur J Biochem; 1978 Apr; 85(2):471-8. PubMed ID: 648531 [TBL] [Abstract][Full Text] [Related]
19. Phosphorus-31 nuclear magnetic resonance study on cytoplasmic aspartate aminotransferase from pig heart. A reinvestigation. Schnackerz KD Biochim Biophys Acta; 1984 Sep; 789(2):241-4. PubMed ID: 6477931 [TBL] [Abstract][Full Text] [Related]
20. Lanthanide-induced phosphorus-31 NMR downfield chemical shifts of lysophosphatidylcholines are sensitive to lysophospholipid critical micelle concentration. Kumar VV; Baumann WJ Biophys J; 1991 Jan; 59(1):103-7. PubMed ID: 2015376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]