BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 10961050)

  • 1. Contribution to the biological assessment of orthodontic acrylic materials. Measurement of their residual monomer output and cytotoxicity.
    Rose EC; Bumann J; Jonas IE; Kappert HF
    J Orofac Orthop; 2000; 61(4):246-57. PubMed ID: 10961050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of residual monomer loss from cold-cure orthodontic acrylic resins processed by different polymerization techniques.
    Nik TH; Shahroudi AS; Eraghihzadeh Z; Aghajani F
    J Orthod; 2014 Mar; 41(1):30-7. PubMed ID: 24671287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of the agar overlay assay: assessment of the influence of acrylics used in orthodontics on proliferation and differentiation of primary and transformed fibroblasts.
    Schuster G; Tomakidi P; Kohl A; Komposch G
    J Orofac Orthop; 1996 Dec; 57(6):344-53. PubMed ID: 8986053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Disinfectants on Mechanical Properties of Orthodontic Acrylics.
    Bensel T; Bock JJ; Kebernik A; Arnold C; Mansour S; Boeckler AF
    Int J Biomater; 2019; 2019():1096208. PubMed ID: 31178912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparative analysis of tissue reaction to acrylic resin materials in studies on Wistar strain rats].
    Sobolewska E
    Ann Acad Med Stetin; 1999; 45():253-64. PubMed ID: 10909494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Level of residual monomer released from orthodontic acrylic materials.
    Iça RB; Öztürk F; Ates B; Malkoc MA; Kelestemur Ü
    Angle Orthod; 2014 Sep; 84(5):862-7. PubMed ID: 24601878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The testing of the toxicity of the plastics used in orthodontics].
    Schendel KU; Lenhardt M; Fusenig NE; Komposch G
    Fortschr Kieferorthop; 1992 Oct; 53(5):263-72. PubMed ID: 1427538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acrylic removable appliances: comparative evaluation of different postpolymerization methods.
    Faltermeier A; Rosentritt M; Müssig D
    Am J Orthod Dentofacial Orthop; 2007 Mar; 131(3):301.e16-22. PubMed ID: 17346579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and quantification of leachable substances from polymer-based orthodontic base-plate materials.
    Kopperud HM; Kleven IS; Wellendorf H
    Eur J Orthod; 2011 Feb; 33(1):26-31. PubMed ID: 20624754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residual methyl methacrylate monomer, water sorption, and water solubility of hypoallergenic denture base materials.
    Pfeiffer P; Rosenbauer EU
    J Prosthet Dent; 2004 Jul; 92(1):72-8. PubMed ID: 15232564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elution study of acrylic monomers from orthodontic materials using high performance liquid chromatography (HPLC).
    Kux BJ; Bacigalupo LM; Scriba A; Emmrich M; Jost-Brinkmann PG
    J Orofac Orthop; 2022 Jan; 83(1):34-47. PubMed ID: 33852039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High performance liquid chromatographic determination of residual monomer released from heat-cured acrylic resin. An in vivo study.
    Singh RD; Gautam R; Siddhartha R; Singh BP; Chand P; Sharma VP; Jurel SK
    J Prosthodont; 2013 Jul; 22(5):358-61. PubMed ID: 23869850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of two fibre impregnation methods on the cytotoxicity of a glass and carbon fibre-reinforced acrylic resin denture base material on oral epithelial cells and fibroblasts.
    Sipahi C; Ozen J; Ural AU; Dalkiz M; Beydemir B
    J Oral Rehabil; 2006 Sep; 33(9):666-73. PubMed ID: 16922740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Evaluation of Bacterial Colonization Color Stability and Halitosis of Oral Appliances Fabricated Using Cold Cure Acrylics, Heat Cure Acrylics and Thermoforming Sheets: An
    Madhuri L; Puppala R; Kethineni B; Valasingam SK; Vibha C
    Int J Clin Pediatr Dent; 2022; 15(5):499-503. PubMed ID: 36865734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [An in-vitro study of 2 resins used in orthodontics for their cell toxicity].
    Zentner A; Sergl HG; Kretschmer A
    Fortschr Kieferorthop; 1994 Dec; 55(6):311-8. PubMed ID: 7851827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time cell analysis of the cytotoxicity of the components of orthodontic acrylic materials on gingival fibroblasts.
    Öztürk F; Malkoc S; Ersöz M; Hakki SS; Bozkurt BS
    Am J Orthod Dentofacial Orthop; 2011 Nov; 140(5):e243-9. PubMed ID: 22051502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro investigation into the biological assessment of orthodontic wires.
    Rose EC; Jonas IE; Kappert HF
    J Orofac Orthop; 1998; 59(5):253-64. PubMed ID: 9800440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RP-HPLC detection and dosage method for acrylic monomers and degradation products released from implanted medical devices.
    Tortolano L; Hammami S; Manerlax K; Do B; Yagoubi N
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Dec; 1038():26-33. PubMed ID: 27776330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of post-polymerization heat-treatments on degree of conversion, leaching residual MMA and in vitro cytotoxicity of autopolymerizing acrylic repair resin.
    Bural C; Aktaş E; Deniz G; Ünlüçerçi Y; Kızılcan N; Bayraktar G
    Dent Mater; 2011 Nov; 27(11):1135-43. PubMed ID: 21920593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytotoxicity of two autopolymerized acrylic resins used in orthodontics.
    Siqueira Gonçalves T; Minghelli Schmitt V; Thomas M; Lopes de Souza MA; Macedo de Menezes L
    Angle Orthod; 2008 Sep; 78(5):926-30. PubMed ID: 18298202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.