BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 10961052)

  • 1. Application of bone remodeling theories in the simulation of orthodontic tooth movements.
    Bourauel C; Vollmer D; Jäger A
    J Orofac Orthop; 2000; 61(4):266-79. PubMed ID: 10961052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of orthodontic tooth movements. A comparison of numerical models.
    Bourauel C; Freudenreich D; Vollmer D; Kobe D; Drescher D; Jäger A
    J Orofac Orthop; 1999; 60(2):136-51. PubMed ID: 10220981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulation of canine retraction by sliding mechanics.
    Kojima Y; Fukui H
    Am J Orthod Dentofacial Orthop; 2005 May; 127(5):542-51. PubMed ID: 15877034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement.
    Ammar HH; Ngan P; Crout RJ; Mucino VH; Mukdadi OM
    Am J Orthod Dentofacial Orthop; 2011 Jan; 139(1):e59-71. PubMed ID: 21195258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation of tooth movement in a therapy period.
    Qian Y; Fan Y; Liu Z; Zhang M
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S48-52. PubMed ID: 17923176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the centre of resistance in an upper human canine and idealized tooth model.
    Vollmer D; Bourauel C; Maier K; Jäger A
    Eur J Orthod; 1999 Dec; 21(6):633-48. PubMed ID: 10665193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulations of canine retraction with T-loop springs based on the updated moment-to-force ratio.
    Kojima Y; Fukui H
    Eur J Orthod; 2012 Feb; 34(1):10-8. PubMed ID: 21135033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of effective intrusion and extrusion force for maxillary canine using finite element analysis.
    Wu J; Liu Y; Wang D; Zhang J; Dong X; Jiang X; Xu X
    Comput Methods Biomech Biomed Engin; 2019 Dec; 22(16):1294-1302. PubMed ID: 31553278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomechanical case study on the optimal orthodontic force on the maxillary canine tooth based on finite element analysis.
    Wu JL; Liu YF; Peng W; Dong HY; Zhang JX
    J Zhejiang Univ Sci B; 2018 Jul; 19(7):535-546. PubMed ID: 29971992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moment-to-force ratio, center of rotation, and force level: a finite element study predicting their interdependency for simulated orthodontic loading regimens.
    Cattaneo PM; Dalstra M; Melsen B
    Am J Orthod Dentofacial Orthop; 2008 May; 133(5):681-9. PubMed ID: 18456141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical simulation of tooth movement by wire bending.
    Kojima Y; Fukui H
    Am J Orthod Dentofacial Orthop; 2006 Oct; 130(4):452-9. PubMed ID: 17045144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element analysis of the effect of force directions on tooth movement in extraction space closure with miniscrew sliding mechanics.
    Kojima Y; Kawamura J; Fukui H
    Am J Orthod Dentofacial Orthop; 2012 Oct; 142(4):501-8. PubMed ID: 22999674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The finite element method: a tool to study orthodontic tooth movement.
    Cattaneo PM; Dalstra M; Melsen B
    J Dent Res; 2005 May; 84(5):428-33. PubMed ID: 15840778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biomechanical study on orthodontic tooth movement by means of numerical simulation. Effects of principal stresses in periodontal membrane].
    Inoue Y
    Osaka Daigaku Shigaku Zasshi; 1989 Dec; 34(2):306-21. PubMed ID: 2488922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element method analysis of the periodontal ligament in mandibular canine movement with transparent tooth correction treatment.
    Cai Y; Yang X; He B; Yao J
    BMC Oral Health; 2015 Sep; 15():106. PubMed ID: 26337291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal loading conditions for controlled movement of anterior teeth in sliding mechanics.
    Tominaga JY; Tanaka M; Koga Y; Gonzales C; Kobayashi M; Yoshida N
    Angle Orthod; 2009 Nov; 79(6):1102-7. PubMed ID: 19852600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numeric simulations of en-masse space closure with sliding mechanics.
    Kojima Y; Fukui H
    Am J Orthod Dentofacial Orthop; 2010 Dec; 138(6):702.e1-6; discussion 702-4. PubMed ID: 21130318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apical stress distribution on maxillary central incisor during various orthodontic tooth movements by varying cemental and two different periodontal ligament thicknesses: a FEM study.
    Vikram NR; Senthil Kumar KS; Nagachandran KS; Hashir YM
    Indian J Dent Res; 2012; 23(2):213-20. PubMed ID: 22945712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smart brackets for 3D-force-moment measurements in orthodontic research and therapy - developmental status and prospects.
    Lapatki BG; Paul O
    J Orofac Orthop; 2007 Sep; 68(5):377-96. PubMed ID: 17882365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of root and bone morphology on the stress distribution in the periodontal ligament.
    Choy K; Pae EK; Park Y; Kim KH; Burstone CJ
    Am J Orthod Dentofacial Orthop; 2000 Jan; 117(1):98-105. PubMed ID: 10629526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.