BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 10961162)

  • 1. Changes to the quantity and processing of starchy foods in a western diet can increase polysaccharides escaping digestion and improve in vitro fermentation variables.
    Birkett AM; Mathers JC; Jones GP; Walker KZ; Roth MJ; Muir JG
    Br J Nutr; 2000 Jul; 84(1):63-72. PubMed ID: 10961162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro fermentation of various fiber and starch sources by pig fecal inocula.
    Wang JF; Zhu YH; Li DF; Wang Z; Jensen BB
    J Anim Sci; 2004 Sep; 82(9):2615-22. PubMed ID: 15446478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small intestinal malabsorption and colonic fermentation of resistant starch and resistant peptides to short-chain fatty acids.
    Nordgaard I; Mortensen PB; Langkilde AM
    Nutrition; 1995; 11(2):129-37. PubMed ID: 7544175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ileal recovery of starch from whole diets containing resistant starch measured in vitro and fermentation of ileal effluent.
    Silvester KR; Englyst HN; Cummings JH
    Am J Clin Nutr; 1995 Aug; 62(2):403-11. PubMed ID: 7625349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of high-resistant-starch banana flour (RS(2)) on in vitro fermentation and the small-bowel excretion of energy, nutrients, and sterols: an ileostomy study.
    Langkilde AM; Champ M; Andersson H
    Am J Clin Nutr; 2002 Jan; 75(1):104-11. PubMed ID: 11756067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digestion and physiological properties of resistant starch in the human large bowel.
    Cummings JH; Beatty ER; Kingman SM; Bingham SA; Englyst HN
    Br J Nutr; 1996 May; 75(5):733-47. PubMed ID: 8695600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model.
    Bednar GE; Patil AR; Murray SM; Grieshop CM; Merchen NR; Fahey GC
    J Nutr; 2001 Feb; 131(2):276-86. PubMed ID: 11160546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: use of cannulated pigs and in vitro fermentation.
    Anguita M; Canibe N; Pérez JF; Jensen BB
    J Anim Sci; 2006 Oct; 84(10):2766-78. PubMed ID: 16971578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch.
    McOrist AL; Miller RB; Bird AR; Keogh JB; Noakes M; Topping DL; Conlon MA
    J Nutr; 2011 May; 141(5):883-9. PubMed ID: 21430242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary intake and faecal excretion of carbohydrate by Australians: importance of achieving stool weights greater than 150 g to improve faecal markers relevant to colon cancer risk.
    Birkett AM; Jones GP; de Silva AM; Young GP; Muir JG
    Eur J Clin Nutr; 1997 Sep; 51(9):625-32. PubMed ID: 9306090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Food processing and maize variety affects amounts of starch escaping digestion in the small intestine.
    Muir JG; Birkett A; Brown I; Jones G; O'Dea K
    Am J Clin Nutr; 1995 Jan; 61(1):82-9. PubMed ID: 7825543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of fecal markers relevant to colon cancer risk: a high-starch Chinese diet did not generate expected beneficial changes relative to a Western-type diet.
    Muir JG; Walker KZ; Kaimakamis MA; Cameron MA; Govers MJ; Lu ZX; Young GP; O'Dea K
    Am J Clin Nutr; 1998 Aug; 68(2):372-9. PubMed ID: 9701196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of fermentation of cereals on the degradation of polysaccharides and other macronutrients in the gastrointestinal tract of growing pigs.
    Sholly DM; Jørgensen H; Sutton AL; Richert BT; Bach Knudsen KE
    J Anim Sci; 2011 Jul; 89(7):2096-105. PubMed ID: 21317344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs.
    Jha R; Leterme P
    Animal; 2012 Apr; 6(4):603-11. PubMed ID: 22436276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatically Modified Starch Favorably Modulated Intestinal Transit Time and Hindgut Fermentation in Growing Pigs.
    Newman MA; Zebeli Q; Velde K; Grüll D; Molnar T; Kandler W; Metzler-Zebeli BU
    PLoS One; 2016; 11(12):e0167784. PubMed ID: 27936165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens.
    Choct M; Hughes RJ; Wang J; Bedford MR; Morgan AJ; Annison G
    Br Poult Sci; 1996 Jul; 37(3):609-21. PubMed ID: 8842468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides.
    Topping DL; Clifton PM
    Physiol Rev; 2001 Jul; 81(3):1031-64. PubMed ID: 11427691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Food Starch Structure Impacts Gut Microbiome Composition.
    Warren FJ; Fukuma NM; Mikkelsen D; Flanagan BM; Williams BA; Lisle AT; Ó Cuív P; Morrison M; Gidley MJ
    mSphere; 2018; 3(3):. PubMed ID: 29769378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of resistant starch on the intestinal health of old dogs: fermentation products and histological features of the intestinal mucosa.
    Peixoto MC; Ribeiro ÉM; Maria APJ; Loureiro BA; di Santo LG; Putarov TC; Yoshitoshi FN; Pereira GT; Sá LRM; Carciofi AC
    J Anim Physiol Anim Nutr (Berl); 2018 Feb; 102(1):e111-e121. PubMed ID: 28444804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of oligosaccharide and polysaccharide digestion, and excreta losses of lactic acid and short chain fatty acids, to dietary metabolisable energy values in broiler chickens and adult cockerels.
    Carré B; Gomez J; Chagneau AM
    Br Poult Sci; 1995 Sep; 36(4):611-29. PubMed ID: 8590094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.