These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 10961939)

  • 1. Phosphinic peptide inhibitors as tools in the study of the function of zinc metallopeptidases.
    Dive V; Lucet-Levannier K; Georgiadis D; Cotton J; Vassiliou S; Cuniasse P; Yiotakis A
    Biochem Soc Trans; 2000; 28(4):455-60. PubMed ID: 10961939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphinic peptides as zinc metalloproteinase inhibitors.
    Dive V; Georgiadis D; Matziari M; Makaritis A; Beau F; Cuniasse P; Yiotakis A
    Cell Mol Life Sci; 2004 Aug; 61(16):2010-9. PubMed ID: 15316651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of P1'-diversified phosphinic peptides leads to the development of highly selective inhibitors of MMP-11.
    Matziari M; Beau F; Cuniasse P; Dive V; Yiotakis A
    J Med Chem; 2004 Jan; 47(2):325-36. PubMed ID: 14711305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide hydrolysis by the binuclear zinc enzyme aminopeptidase from Aeromonas proteolytica: a density functional theory study.
    Chen SL; Marino T; Fang WH; Russo N; Himo F
    J Phys Chem B; 2008 Feb; 112(8):2494-500. PubMed ID: 18247603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic active site-directed inhibitors of metzincins: achievement and perspectives.
    Yiotakis A; Dive V
    Mol Aspects Med; 2008 Oct; 29(5):329-38. PubMed ID: 18657570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combinatorial approach to minimal peptide models of a metalloprotein active site.
    Namuswe F; Goldberg DP
    Chem Commun (Camb); 2006 Jun; (22):2326-8. PubMed ID: 16733568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active methylene phosphinic peptides: a new diversification approach.
    Matziari M; Nasopoulou M; Yiotakis A
    Org Lett; 2006 May; 8(11):2317-9. PubMed ID: 16706515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of highly potent and selective phosphinic peptide inhibitors of zinc endopeptidase 24-15 using combinatorial chemistry.
    Jirácek J; Yiotakis A; Vincent B; Lecoq A; Nicolaou A; Checler F; Dive V
    J Biol Chem; 1995 Sep; 270(37):21701-6. PubMed ID: 7665587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disclosing new inhibitors by finding similarities in three-dimensional active-site architectures of polynuclear zinc phospholipases and aminopeptidases.
    González-Roura A; Navarro I; Delgado A; Llebaria A; Casas J
    Angew Chem Int Ed Engl; 2004 Feb; 43(7):862-5. PubMed ID: 14767959
    [No Abstract]   [Full Text] [Related]  

  • 10. Diastereoselective solution and multipin-based combinatorial array synthesis of a novel class of potent phosphinic metalloprotease inhibitors.
    Makaritis A; Georgiadis D; Dive V; Yiotakis A
    Chemistry; 2003 May; 9(9):2079-94. PubMed ID: 12740857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The astacin family of metalloproteinases].
    Semenova SA; Rudenskaia GN
    Biomed Khim; 2008; 54(5):531-54. PubMed ID: 19105396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow-binding human serine racemase inhibitors from high-throughput screening of combinatorial libraries.
    Dixon SM; Li P; Liu R; Wolosker H; Lam KS; Kurth MJ; Toney MD
    J Med Chem; 2006 Apr; 49(8):2388-97. PubMed ID: 16610782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quinolinol and peptide inhibitors of zinc protease in botulinum neurotoxin A: effects of zinc ion and peptides on inhibition.
    Lai H; Feng M; Roxas-Duncan V; Dakshanamurthy S; Smith LA; Yang DC
    Arch Biochem Biophys; 2009 Nov; 491(1-2):75-84. PubMed ID: 19772855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphinic peptides as potent inhibitors of zinc-metalloproteases.
    Georgiadis D; Dive V
    Top Curr Chem; 2015; 360():1-38. PubMed ID: 25370521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection and analysis of solid-binding peptides.
    Baneyx F; Schwartz DT
    Curr Opin Biotechnol; 2007 Aug; 18(4):312-7. PubMed ID: 17616387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applying combinatorial chemistry and biology to food research.
    Wong D; Robertson G
    J Agric Food Chem; 2004 Dec; 52(24):7187-98. PubMed ID: 15563194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. When the surface tells what lies beneath: combinatorial phage-display mutagenesis reveals complex networks of surface-core interactions in the pacifastin protease inhibitor family.
    Szenthe B; Patthy A; Gáspári Z; Kékesi AK; Gráf L; Pál G
    J Mol Biol; 2007 Jun; 370(1):63-79. PubMed ID: 17499271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid phase synthesis of mixture-based acyclic and heterocyclic small molecule combinatorial libraries from resin-bound polyamides.
    Nefzi A; Ostresh JM; Houghten RA
    Biopolymers; 2001; 60(3):212-9. PubMed ID: 11774227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial chemistry: libraries from libraries, the art of the diversity-oriented transformation of resin-bound peptides and chiral polyamides to low molecular weight acyclic and heterocyclic compounds.
    Nefzi A; Ostresh JM; Yu Y; Houghten RA
    J Org Chem; 2004 May; 69(11):3603-9. PubMed ID: 15152987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial beta-peptidyl aminopeptidases: on the hydrolytic degradation of beta-peptides.
    Geueke B; Kohler HP
    Appl Microbiol Biotechnol; 2007 Apr; 74(6):1197-204. PubMed ID: 17318535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.