BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 10961995)

  • 1. Identification of a phospholemman-like protein from shark rectal glands. Evidence for indirect regulation of Na,K-ATPase by protein kinase c via a novel member of the FXYDY family.
    Mahmmoud YA; Vorum H; Cornelius F
    J Biol Chem; 2000 Nov; 275(46):35969-77. PubMed ID: 10961995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-peptide increases Na,K-ATPase expression via PKC- and MAP kinase-dependent activation of transcription factor ZEB in human renal tubular cells.
    Galuska D; Pirkmajer S; Barrès R; Ekberg K; Wahren J; Chibalin AV
    PLoS One; 2011; 6(12):e28294. PubMed ID: 22162761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholemman (FXYD1) associates with Na,K-ATPase and regulates its transport properties.
    Crambert G; Fuzesi M; Garty H; Karlish S; Geering K
    Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11476-81. PubMed ID: 12169672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein phosphatase 2A interacts with the Na,K-ATPase and modulates its trafficking by inhibition of its association with arrestin.
    Kimura T; Han W; Pagel P; Nairn AC; Caplan MJ
    PLoS One; 2011; 6(12):e29269. PubMed ID: 22242112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The gamma subunit of the Na,K-ATPase induces cation channel activity.
    Minor NT; Sha Q; Nichols CG; Mercer RW
    Proc Natl Acad Sci U S A; 1998 May; 95(11):6521-5. PubMed ID: 9600999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation, crystallization and crystal structure determination of bovine kidney Na(+),K(+)-ATPase.
    Gregersen JL; Mattle D; Fedosova NU; Nissen P; Reinhard L
    Acta Crystallogr F Struct Biol Commun; 2016 Apr; 72(Pt 4):282-7. PubMed ID: 27050261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Reduction of Redox Modifications of Cys-Residues in the Na,K-ATPase α1-Subunit on Its Activity.
    Dergousova EA; Petrushanko IY; Klimanova EA; Mitkevich VA; Ziganshin RH; Lopina OD; Makarov AA
    Biomolecules; 2017 Feb; 7(1):. PubMed ID: 28230807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compensatory proteome adjustments imply tissue-specific structural and metabolic reorganization following episodic hypoxia or anoxia in the epaulette shark (Hemiscyllium ocellatum).
    Dowd WW; Renshaw GM; Cech JJ; Kültz D
    Physiol Genomics; 2010 Jun; 42(1):93-114. PubMed ID: 20371547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutathione-dependent depalmitoylation of phospholemman by peroxiredoxin 6.
    Howie J; Tulloch LB; Brown E; Reilly L; Ashford FB; Kennedy J; Wypijewski KJ; Aughton KL; Mak JKC; Shattock MJ; Fraser NJ; Fuller W
    Cell Rep; 2024 Feb; 43(2):113679. PubMed ID: 38236777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mouse Na+/K+-ATPase beta1-subunit has a K+-dependent cell adhesion activity for beta-GlcNAc-terminating glycans.
    Kitamura N; Ikekita M; Sato T; Akimoto Y; Hatanaka Y; Kawakami H; Inomata M; Furukawa K
    Proc Natl Acad Sci U S A; 2005 Feb; 102(8):2796-801. PubMed ID: 15705719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of cytochrome c on Na,K-ATPase.
    Chkadua G; Nozadze E; Tsakadze L; Shioshvili L; Arutinova N; Leladze M; Dzneladze S; Javakhishvili M; Jariashvili T; Petriashvili E
    J Bioenerg Biomembr; 2024 Jun; 56(3):221-234. PubMed ID: 38517564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TRAF2 Is a Novel Ubiquitin E3 Ligase for the Na,K-ATPase β-Subunit That Drives Alveolar Epithelial Dysfunction in Hypercapnia.
    Gabrielli NM; Mazzocchi LC; Kryvenko V; Tello K; Herold S; Morty RE; Grimminger F; Dada LA; Seeger W; Sznajder JI; Vadász I
    Front Cell Dev Biol; 2021; 9():689983. PubMed ID: 34277634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryoelectron microscopy of Na
    Kanai R; Cornelius F; Vilsen B; Toyoshima C
    Proc Natl Acad Sci U S A; 2022 Apr; 119(15):e2123226119. PubMed ID: 35380894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FXYD proteins and sodium pump regulatory mechanisms.
    Yap JQ; Seflova J; Sweazey R; Artigas P; Robia SL
    J Gen Physiol; 2021 Apr; 153(4):. PubMed ID: 33688925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic study of the brackish water mussel
    Stekhoven FMS; van der Velde G; Lee TH; Bottrill AR
    Zool Stud; 2015; 54():e22. PubMed ID: 31966109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FXYD8, a Novel Regulator of Renal Na
    Wang PJ; Yang WK; Lin CH; Hwang HH; Lee TH
    Front Physiol; 2017; 8():576. PubMed ID: 28848450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early vertebrate origin and diversification of small transmembrane regulators of cellular ion transport.
    Pirkmajer S; Kirchner H; Lundell LS; Zelenin PV; Zierath JR; Makarova KS; Wolf YI; Chibalin AV
    J Physiol; 2017 Jul; 595(14):4611-4630. PubMed ID: 28436536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different Modulatory Mechanisms of Renal FXYD12 for Na(+)-K(+)-ATPase between Two Closely Related Medakas upon Salinity Challenge.
    Yang WK; Kang CK; Hsu AD; Lin CH; Lee TH
    Int J Biol Sci; 2016; 12(6):730-45. PubMed ID: 27194950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structural rearrangement of the Na+/K+-ATPase traps ouabain within the external ion permeation pathway.
    Sánchez-Rodríguez JE; Khalili-Araghi F; Miranda P; Roux B; Holmgren M; Bezanilla F
    J Mol Biol; 2015 Mar; 427(6 Pt B):1335-1344. PubMed ID: 25637661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: functional significance.
    Clausen T
    J Gen Physiol; 2013 Oct; 142(4):327-45. PubMed ID: 24081980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.