These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10962227)

  • 1. Improvement of intestinal absorption of peptides: adsorption of B1-Phe monoglucosylated insulin to rat intestinal brush-border membrane vesicles.
    Hashimoto T; Nomoto M; Komatsu K; Haga M; Hayashi M
    Eur J Pharm Biopharm; 2000 Sep; 50(2):197-204. PubMed ID: 10962227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of intestinal absorption of peptide drugs by glycosylation: transport of tetrapeptide by the sodium ion-dependent D-glucose transporter.
    Nomoto M; Yamada K; Haga M; Hayashi M
    J Pharm Sci; 1998 Mar; 87(3):326-32. PubMed ID: 9523986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoglycemic effect of intestinally administered monosaccharide-modified insulin derivatives in rats.
    Haga M; Saito K; Shimaya T; Maezawa Y; Kato Y; Kim SW
    Chem Pharm Bull (Tokyo); 1990 Jul; 38(7):1983-6. PubMed ID: 2268900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na(+)-D-glucose cotransport by intestinal BBMVs of the Antarctic fish Trematomus bernacchii.
    Maffia M; Acierno R; Cillo E; Storelli C
    Am J Physiol; 1996 Dec; 271(6 Pt 2):R1576-83. PubMed ID: 8997355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insulin regulates Na+/glucose cotransporter activity in rat small intestine.
    Fujii Y; Kaizuka M; Hashida F; Maruo J; Sato E; Yasuda H; Kurokawa T; Ishibashi S
    Biochim Biophys Acta; 1991 Mar; 1063(1):90-4. PubMed ID: 2015265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced glucose absorption in the rat small intestine following repeated doses of 5-fluorouracil.
    Tomimatsu T; Horie T
    Chem Biol Interact; 2005 Aug; 155(3):129-39. PubMed ID: 15996645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal absorption studies on peptide mimetic alpha-methyldopa prodrugs.
    Wang HP; Lu HH; Lee JS; Cheng CY; Mah JR; Ku CY; Hsu W; Yen CF; Lin CJ; Kuo HS
    J Pharm Pharmacol; 1996 Mar; 48(3):270-6. PubMed ID: 8737052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleosides are efficiently absorbed by Na(+)-dependent transport across the intestinal brush border membrane in veal calves.
    Theisinger A; Grenacher B; Rech KS; Scharrer E
    J Dairy Sci; 2002 Sep; 85(9):2308-14. PubMed ID: 12362464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thyrotropin-releasing hormone (TRH) uptake in intestinal brush-border membrane vesicles: comparison with proton-coupled dipeptide and Na(+)-coupled glucose transport.
    Thwaites DT; Simmons NL; Hirst BH
    Pharm Res; 1993 May; 10(5):667-73. PubMed ID: 8391693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased transport of D-glucose and L-alanine across brush-border membrane vesicles from small intestine of rats treated with mitomycin C.
    Mizuno M; Yoshino H; Hashida M; Sezaki H
    Biochim Biophys Acta; 1987 Aug; 902(1):93-100. PubMed ID: 3111535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased Na(+)-dependent D-glucose transport in small intestine of retinyl palmitate treated rats.
    Tomimatsu T; Horie T
    In Vivo; 2001; 15(1):81-6. PubMed ID: 11286135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of glucose transport in small intestinal brush border membrane of retinol administered rat.
    Tanii H; Horie T
    Life Sci; 1999; 64(15):1259-64. PubMed ID: 10227581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-dependent D-glucose transport in brush-border membrane vesicles from isolated rat small intestinal villus and crypt epithelial cells.
    Freeman HJ; Johnston G; Quamme GA
    Can J Physiol Pharmacol; 1987 Jun; 65(6):1213-9. PubMed ID: 3621069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of hyperglycemia on D-glucose transport across the brush-border and basolateral membrane of rat small intestine.
    Maenz DD; Cheeseman CI
    Biochim Biophys Acta; 1986 Aug; 860(2):277-85. PubMed ID: 3741853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of thiamin in rat renal brush border membrane vesicles.
    Gastaldi G; Cova E; Verri A; Laforenza U; Faelli A; Rindi G
    Kidney Int; 2000 May; 57(5):2043-54. PubMed ID: 10792623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective stimulation of brush border glutamine transport in the tumor-bearing rat.
    Salloum RM; Copeland EM; Bland KI; Souba WW
    J Surg Res; 1991 Apr; 50(4):391-7. PubMed ID: 2020190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired intestinal sugar transport in cirrhotic rats: correction by low doses of insulin-like growth factor I.
    Castilla-Cortazar I; Prieto J; Urdaneta E; Pascual M; Nuñez M; Zudaire E; Garcia M; Quiroga J; Santidrian S
    Gastroenterology; 1997 Oct; 113(4):1180-7. PubMed ID: 9322513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. D-galactose transport in rat intestinal brush border membrane vesicles studied with a molecular-sieve technique.
    Bronk JR; Hastewell JG
    J Physiol; 1986 Jun; 375():71-9. PubMed ID: 3795071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high yield preparation of brush border membrane vesicles from organ-cultured embryonic chick jejunum: demonstration of insulin sensitivity of Na(+)-dependent D-glucose transport.
    Debiec H; Cross HS; Peterlik M
    J Nutr; 1991 Jan; 121(1):105-13. PubMed ID: 1992047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in D-glucose uptake by brush-border vesicles from small intestine of rats treated with mitomycin C.
    Mizuno M; Hamaura T; Hashida M; Sezaki H
    Biochem Pharmacol; 1986 Apr; 35(7):1153-8. PubMed ID: 3083817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.