BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 1096224)

  • 1. The repair of potentially lethal damage; an alternative approach.
    Chadwick KH; Leenhouts HP
    Radiat Environ Biophys; 1975; 11(4):319-25. PubMed ID: 1096224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentially lethal damage: Qualitative differences between ionizing and non-ionizing radiation and implications for 'single-hit' killing.
    Utsumi H; Elkind MM
    Int J Radiat Biol Relat Stud Phys Chem Med; 1979 Apr; 35(4):373-80. PubMed ID: 312795
    [No Abstract]   [Full Text] [Related]  

  • 3. Enhancement of radiosensitivity of cultured mammalian cells by neocarzinostatin. I. Inhibition of the repair of sublethal damage.
    Antoku S; Kura S
    Int J Radiat Biol; 1990 Oct; 58(4):613-22. PubMed ID: 1976722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of radiosensitivity of cultured mammalian cells by neocarzinostatin. II. Fixation of potentially lethal damage.
    Antoku S; Kura S
    Int J Radiat Biol; 1990 Oct; 58(4):623-32. PubMed ID: 1976723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of caffeine on the expression of potentially lethal and sublethal damage in gamma-irradiated cultured mammalian cells.
    Schroy CB; Todd P
    Radiat Res; 1979 May; 78(2):312-6. PubMed ID: 451159
    [No Abstract]   [Full Text] [Related]  

  • 6. Interaction between radiation and drug damage in mammalian cells. III. The effect of adriamycin and actinomycin-D on the repair of potentially lethal radiation damage.
    Dritschilo A; Piro AJ; Belli JA
    Int J Radiat Biol Relat Stud Phys Chem Med; 1979 Jun; 35(6):549-60. PubMed ID: 314429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Nature and repair of potentially lethal injuries].
    Gotlib VIa; Synzynys BI; Trofimova SF; Noskin LA; Saenko AS
    Radiobiologiia; 1981; 21(6):818-28. PubMed ID: 7323270
    [No Abstract]   [Full Text] [Related]  

  • 8. Analyzing the role of biochemical processes in determining response to ionizing radiations.
    Nelson JM; Braby LA; Metting NF; Roesch WC
    Health Phys; 1989; 57 Suppl 1():369-76. PubMed ID: 2606695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a general relationship between the induced level of DNA double-strand breakage and cell-killing after X-irradiation of mammalian cells.
    Radford IR
    Int J Radiat Biol Relat Stud Phys Chem Med; 1986 Apr; 49(4):611-20. PubMed ID: 3485603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors influencing the repair of potentially lethal radiation damage in growth-inhibited human cells.
    Little JB
    Radiat Res; 1973 Nov; 56(2):320-33. PubMed ID: 4749594
    [No Abstract]   [Full Text] [Related]  

  • 11. Enhanced cell killing, inhibition of recovery from potentially lethal damage and increased mutation frequency by 3-aminobenzamide in Chinese hamster V79 cells exposed to X-rays.
    Kumar A; Kiefer J; Schneider E; Crompton NE
    Int J Radiat Biol Relat Stud Phys Chem Med; 1985 Jan; 47(1):103-12. PubMed ID: 3871741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repair of radiation induced damage in two human tumour cell lines grown as spheroids and monolayers.
    Schwachöfer JH; Crooijmans RP; Borm GF; van Gasteren JJ; Hoogenhout J; Kal HB
    Strahlenther Onkol; 1990 Nov; 166(11):753-60. PubMed ID: 2260013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Split-dose recovery is due to the repair of DNA double-strand breaks.
    Frankenberg D; Frankenberg-Schwager M; Harbich R
    Int J Radiat Biol Relat Stud Phys Chem Med; 1984 Nov; 46(5):541-53. PubMed ID: 6394530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of hyperthermia on the repair of X-ray-induced DNA double strand breaks in mouse L cells.
    Radford IR
    Int J Radiat Biol Relat Stud Phys Chem Med; 1983 May; 43(5):551-7. PubMed ID: 6602106
    [No Abstract]   [Full Text] [Related]  

  • 15. Radiosensitivity throughout the cell cycle and repair of potentially lethal damage and DNA double-strand breaks in an X-ray-sensitive CHO mutant.
    Iliakis GE; Okayasu R
    Int J Radiat Biol; 1990 Jun; 57(6):1195-211. PubMed ID: 1971844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of mutation frequency in plateau phase Chinese hamster ovary cells exposed to gamma radiation during recovery from potentially lethal damage.
    Rao BS; Hopwood LE
    Int J Radiat Biol Relat Stud Phys Chem Med; 1982 Nov; 42(5):501-8. PubMed ID: 6984033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two forms of potentially lethal damage have similar repair kinetics in plateau- and in log-phase cells.
    Utsumi H; Elkind MM
    Int J Radiat Biol Relat Stud Phys Chem Med; 1985 May; 47(5):569-80. PubMed ID: 3873429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A linear-quadratic model of cell survival considering both sublethal and potentially lethal radiation damage.
    Rutz HP; Coucke PA; Mirimanoff RO
    Radiother Oncol; 1991 Aug; 21(4):273-6. PubMed ID: 1924866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potentially lethal damage versus sublethal damage: independent repair processes in actively growing Chinese hamster cells.
    Utsumi H; Elkind MM
    Radiat Res; 1979 Feb; 77(2):346-60. PubMed ID: 441249
    [No Abstract]   [Full Text] [Related]  

  • 20. Recovery from lethal and mutagenic damage during postirradiation holding and low-dose-rate irradiations of cultured hamster cells.
    Thacker J; Stretch A
    Radiat Res; 1983 Nov; 96(2):380-92. PubMed ID: 6647766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.