These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Using 300 Pretreatment Shock Waves in a Voltage Ramping Protocol Can Significantly Reduce Tissue Injury During Extracorporeal Shock Wave Lithotripsy. Connors BA; Evan AP; Handa RK; Blomgren PM; Johnson CD; Liu Z; Lingeman JE J Endourol; 2016 Sep; 30(9):1004-8. PubMed ID: 27307070 [TBL] [Abstract][Full Text] [Related]
23. The acute and long-term adverse effects of shock wave lithotripsy. McAteer JA; Evan AP Semin Nephrol; 2008 Mar; 28(2):200-13. PubMed ID: 18359401 [TBL] [Abstract][Full Text] [Related]
24. Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy. Evan AP; Willis LR; McAteer JA; Bailey MR; Connors BA; Shao Y; Lingeman JE; Williams JC; Fineberg NS; Crum LA J Urol; 2002 Oct; 168(4 Pt 1):1556-62. PubMed ID: 12352457 [TBL] [Abstract][Full Text] [Related]
25. Curcumin prevents shock-wave lithotripsy-induced renal injury through inhibition of nuclear factor kappa-B and inducible nitric oxide synthase activity in rats. Bas M; Tugcu V; Kemahli E; Ozbek E; Uhri M; Altug T; Tasci AI Urol Res; 2009 Jun; 37(3):159-64. PubMed ID: 19340419 [TBL] [Abstract][Full Text] [Related]
26. Prevention of shockwave induced functional and morphological alterations: an overview. Sarica K; Yencilek F Arch Ital Urol Androl; 2008 Mar; 80(1):27-33. PubMed ID: 18533622 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of synchronous twin pulse technique for shock wave lithotripsy: in vivo tissue effects. Sheir KZ; Lee D; Humphrey PA; Morrissey K; Sundaram CP; Clayman RV Urology; 2003 Nov; 62(5):964-7. PubMed ID: 14624935 [TBL] [Abstract][Full Text] [Related]
28. A low or high BMI is a risk factor for renal hematoma after extracorporeal shock wave lithotripsy for kidney stones. Nussberger F; Roth B; Metzger T; Kiss B; Thalmann GN; Seiler R Urolithiasis; 2017 Jun; 45(3):317-321. PubMed ID: 27576325 [TBL] [Abstract][Full Text] [Related]
29. A chronic outcome of shock wave lithotripsy is parenchymal fibrosis. Handa RK; Evan AP Urol Res; 2010 Aug; 38(4):301-5. PubMed ID: 20632169 [TBL] [Abstract][Full Text] [Related]
30. Randomized controlled study of mechanical percussion, diuresis, and inversion therapy to assist passage of lower pole renal calculi after shock wave lithotripsy. Chiong E; Hwee ST; Kay LM; Liang S; Kamaraj R; Esuvaranathan K Urology; 2005 Jun; 65(6):1070-4. PubMed ID: 15922429 [TBL] [Abstract][Full Text] [Related]
31. Shock wave lithotripsy, for the treatment of kidney stones, results in changes to routine blood tests and novel biomarkers: a prospective clinical pilot-study. Hughes SF; Jones N; Thomas-Wright SJ; Banwell J; Moyes AJ; Shergill I Eur J Med Res; 2020 Jun; 25(1):18. PubMed ID: 32487191 [TBL] [Abstract][Full Text] [Related]
32. Comparison of intermediate- and low-frequency shock wave lithotripsy for pediatric kidney stones. Kaygısız O; Kılıçarslan H; Mert A; Coşkun B; Kordan Y Urolithiasis; 2018 Aug; 46(4):391-395. PubMed ID: 28756458 [TBL] [Abstract][Full Text] [Related]
33. Does shock wave lithotripsy of renal stones cause cardiac muscle injury? A troponin I-based study. Greenstein A; Sofer M; Lidawi G; Matzkin H Urology; 2003 May; 61(5):902-5. PubMed ID: 12736000 [TBL] [Abstract][Full Text] [Related]
34. Potential for cavitation-mediated tissue damage in shockwave lithotripsy. Matlaga BR; McAteer JA; Connors BA; Handa RK; Evan AP; Williams JC; Lingeman JE; Willis LR J Endourol; 2008 Jan; 22(1):121-6. PubMed ID: 18315482 [TBL] [Abstract][Full Text] [Related]
35. Hospital admission for treatment of complications after extracorporeal shock wave lithotripsy for renal stones: a study of risk factors. El-Nahas AR; Taha DE; Elsaadany MM; Zahran MH; Hassan M; Sheir KZ Urolithiasis; 2018 Jun; 46(3):291-296. PubMed ID: 28555349 [TBL] [Abstract][Full Text] [Related]
36. Ureteroscopic and extracorporeal shock wave lithotripsy for rather large renal pelvis calculi. Tavakkoli Tabasi K; Baghban Haghighi M Urol J; 2007; 4(4):221-5. PubMed ID: 18270946 [TBL] [Abstract][Full Text] [Related]
37. A multivariate analysis of risk factors associated with subcapsular hematoma formation following electromagnetic shock wave lithotripsy. Dhar NB; Thornton J; Karafa MT; Streem SB J Urol; 2004 Dec; 172(6 Pt 1):2271-4. PubMed ID: 15538247 [TBL] [Abstract][Full Text] [Related]
38. Prevention of lithotripsy-induced renal injury by pretreating kidneys with low-energy shock waves. Willis LR; Evan AP; Connors BA; Handa RK; Blomgren PM; Lingeman JE J Am Soc Nephrol; 2006 Mar; 17(3):663-73. PubMed ID: 16452495 [TBL] [Abstract][Full Text] [Related]
39. Cavitation detection during shock-wave lithotripsy. Bailey MR; Pishchalnikov YA; Sapozhnikov OA; Cleveland RO; McAteer JA; Miller NA; Pishchalnikova IV; Connors BA; Crum LA; Evan AP Ultrasound Med Biol; 2005 Sep; 31(9):1245-56. PubMed ID: 16176791 [TBL] [Abstract][Full Text] [Related]
40. The effect of renal cortical thickness on the treatment outcomes of kidney stones treated with shockwave lithotripsy. Ng CF; Luke S; Chiu PK; Teoh JY; Wong KT; Hou SS Korean J Urol; 2015 May; 56(5):379-85. PubMed ID: 25964839 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]