These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 10962295)
41. The success of shock wave lithotripsy (SWL) in treating moderate-sized (10-20 mm) renal stones. Chung VY; Turney BW Urolithiasis; 2016 Oct; 44(5):441-4. PubMed ID: 26743071 [TBL] [Abstract][Full Text] [Related]
42. The impact of caliceal pelvic anatomy on stone clearance after shock wave lithotripsy for pediatric lower pole stones. Onal B; Demirkesen O; Tansu N; Kalkan M; Altintaş R; Yalçin V J Urol; 2004 Sep; 172(3):1082-6. PubMed ID: 15311043 [TBL] [Abstract][Full Text] [Related]
43. Shock wave lithotripsy for renal stones is not associated with hypertension and diabetes mellitus. Sato Y; Tanda H; Kato S; Ohnishi S; Nakajima H; Nanbu A; Nitta T; Koroku M; Akagashi K; Hanzawa T Urology; 2008 Apr; 71(4):586-91; discussion 591-2. PubMed ID: 18387387 [TBL] [Abstract][Full Text] [Related]
44. The effect of shock wave lithotripsy on nitric oxide and malondialdehyde levels in plasma and urine samples. Aksoy H; Aksoy Y; Turhan H; Keleş S; Ziypak T; Ozbey I Cell Biochem Funct; 2007; 25(5):533-6. PubMed ID: 16850521 [TBL] [Abstract][Full Text] [Related]
45. Pyrolidium dithiocarbamate prevents shockwave lithotripsy-induced renal injury through inhibition of nuclear factor-kappa B and inducible nitric oxide synthase activity in rats. Tugcu V; Bas M; Ozbek E; Kemahli E; Arinci YV; Tuhri M; Altug T; Tasci AI J Endourol; 2008 Mar; 22(3):559-66. PubMed ID: 18321195 [TBL] [Abstract][Full Text] [Related]
46. Clinical predictors of stone fragmentation using slow-rate shock wave lithotripsy. Li WM; Wu WJ; Chou YH; Liu CC; Wang CJ; Huang CH; Lee YC Urol Int; 2007; 79(2):124-8. PubMed ID: 17851280 [TBL] [Abstract][Full Text] [Related]
47. Effects of shock wave lithotripsy on plasma and urinary levels of nitrite and adrenomedullin. Sarica K; Balat A; Erbagci A; Cekmen M; Yurekli M; Yagci F Urol Res; 2003 Oct; 31(5):347-51. PubMed ID: 14574541 [TBL] [Abstract][Full Text] [Related]
48. Shock wave lithotripsy: a randomized, double-blind trial to compare immediate versus delayed voltage escalation. Honey RJ; Ray AA; Ghiculete D; ; Pace KT Urology; 2010 Jan; 75(1):38-43. PubMed ID: 19896176 [TBL] [Abstract][Full Text] [Related]
49. Cost-effectiveness and efficiency of shockwave lithotripsy vs flexible ureteroscopic holmium:yttrium-aluminium-garnet laser lithotripsy in the treatment of lower pole renal calculi. Koo V; Young M; Thompson T; Duggan B BJU Int; 2011 Dec; 108(11):1913-6. PubMed ID: 21453346 [TBL] [Abstract][Full Text] [Related]
50. Optimizing shock wave lithotripsy in the 21st century. Argyropoulos AN; Tolley DA Eur Urol; 2007 Aug; 52(2):344-52. PubMed ID: 17499914 [TBL] [Abstract][Full Text] [Related]
53. [The protective effects of three components isolated from Astragalus membranaceus on shock wave lithotripsy induced kidney injury in rabbit model]. Li X; He DL; Zhang LL; Chen XF; Luo Y; Sheng BW; Yu LH Zhonghua Yi Xue Za Zhi; 2005 Aug; 85(31):2201-6. PubMed ID: 16321185 [TBL] [Abstract][Full Text] [Related]
54. The role of super-mini percutaneous nephrolithotomy (SMP) in the treatment of symptomatic lower pole renal stones (LPSs) after the failure of shockwave lithotripsy (SWL) or retrograde intrarenal surgery (RIRS). Fan J; Zhang T; Zhu W; Gurioli A; Ketegwe IR; Zeng G Urolithiasis; 2019 Jun; 47(3):297-301. PubMed ID: 29947994 [TBL] [Abstract][Full Text] [Related]
55. Pretreatment with low-energy shock waves reduces the renal oxidative stress and inflammation caused by high-energy shock wave lithotripsy. Clark DL; Connors BA; Handa RK; Evan AP Urol Res; 2011 Dec; 39(6):437-42. PubMed ID: 21387182 [TBL] [Abstract][Full Text] [Related]
56. Shock wave lithotripsy success determined by skin-to-stone distance on computed tomography. Pareek G; Hedican SP; Lee FT; Nakada SY Urology; 2005 Nov; 66(5):941-4. PubMed ID: 16286099 [TBL] [Abstract][Full Text] [Related]
57. A Pilot Study to Evaluate Haemostatic Function, following Shock Wave Lithotripsy (SWL) for the Treatment of Solitary Kidney Stones. Hughes SF; Thomas-Wright SJ; Banwell J; Williams R; Moyes AJ; Mushtaq S; Abdulmajed M; Shergill I PLoS One; 2015; 10(5):e0125840. PubMed ID: 25938233 [TBL] [Abstract][Full Text] [Related]
58. [Ischemic lesions in kidneys after extracorporeal shock wave lithotripsy demonstrated by Proton NMR spectroscopy of urine samples]. Berte N; Cayzergues L; Meyer F; Jira H; Eugene M; Conti M; Loric S; Hammoudi Y; Benoit G; Droupy S; Hubert J; Eschwege P Prog Urol; 2011 Jul; 21(7):455-8. PubMed ID: 21693355 [TBL] [Abstract][Full Text] [Related]
59. Pathologic changes in the kidneys and other organs of dogs undergoing extracorporeal shock wave lithotripsy with a tubless lithotripter. Abrahams C; Lipson S; Ross L J Urol; 1988 Aug; 140(2):391-4. PubMed ID: 3398159 [TBL] [Abstract][Full Text] [Related]
60. Extracorporeal shock wave lithotripsy (ESWL) of a renal calculus in a liver transplant recipient: report of a severe complication--a case report. Friedersdorff F; Buckendahl J; Fuller TF; Cash H Transplant Proc; 2010 Nov; 42(9):3868-70. PubMed ID: 21094873 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]