BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 10962350)

  • 1. Higher osteoclastic demineralization and highly mineralized cement lines with osteocalcin deposition in a mandibular cortical bone of autosomal dominant osteopetrosis type II: ultrastructural and undecalcified histological investigations.
    Semba I; Ishigami T; Sugihara K; Kitano M
    Bone; 2000 Sep; 27(3):389-95. PubMed ID: 10962350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disease status in autosomal dominant osteopetrosis type 2 is determined by osteoclastic properties.
    Chu K; Snyder R; Econs MJ
    J Bone Miner Res; 2006 Jul; 21(7):1089-97. PubMed ID: 16813529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice.
    Saftig P; Hunziker E; Wehmeyer O; Jones S; Boyde A; Rommerskirch W; Moritz JD; Schu P; von Figura K
    Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13453-8. PubMed ID: 9811821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of altered bone remodeling and retention of cement lines on bone quality in osteopetrotic aged c-Src-deficient mice.
    Nakayama H; Takakuda K; Matsumoto HN; Miyata A; Baba O; Tabata MJ; Ushiki T; Oda T; McKee MD; Takano Y
    Calcif Tissue Int; 2010 Feb; 86(2):172-83. PubMed ID: 20063091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoclast abnormalities in idiopathic osteopetrosis. Reference to the ultrastructural histochemistry study.
    van Tran P; Dryll A; Lansaman J; Naveau B; Treve R; Miravet L; Ryckewaert A
    Virchows Arch A Pathol Anat Histopathol; 1985; 408(2-3):269-80. PubMed ID: 3936266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural investigations of bone resorptive cells in two types of autosomal dominant osteopetrosis.
    Bollerslev J; Marks SC; Pockwinse S; Kassem M; Brixen K; Steiniche T; Mosekilde L
    Bone; 1993; 14(6):865-9. PubMed ID: 8155410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro differentiation of CD14 cells from osteopetrotic subjects: contrasting phenotypes with TCIRG1, CLCN7, and attachment defects.
    Blair HC; Borysenko CW; Villa A; Schlesinger PH; Kalla SE; Yaroslavskiy BB; Garćia-Palacios V; Oakley JI; Orchard PJ
    J Bone Miner Res; 2004 Aug; 19(8):1329-38. PubMed ID: 15231021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mouse osteopetrotic grey-lethal mutation induces a defect in osteoclast maturation/function.
    Rajapurohitam V; Chalhoub N; Benachenhou N; Neff L; Baron R; Vacher J
    Bone; 2001 May; 28(5):513-23. PubMed ID: 11344051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteopetrosis associated with PLEKHM1 and SNX10 genes, both involved in osteoclast vesicular trafficking.
    Huybrechts Y; Van Hul W
    Bone; 2022 Nov; 164():116520. PubMed ID: 35981699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of the organic phase of bone by osteoclasts: a secondary role for lysosomal acidification.
    Henriksen K; Sørensen MG; Nielsen RH; Gram J; Schaller S; Dziegiel MH; Everts V; Bollerslev J; Karsdal MA
    J Bone Miner Res; 2006 Jan; 21(1):58-66. PubMed ID: 16355274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical bone remodeling in autosomal dominant osteopetrosis: a study of two different phenotypes.
    Brockstedt H; Bollerslev J; Melsen F; Mosekilde L
    Bone; 1996 Jan; 18(1):67-72. PubMed ID: 8717539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Severe developmental bone phenotype in ClC-7 deficient mice.
    Neutzsky-Wulff AV; Sims NA; Supanchart C; Kornak U; Felsenberg D; Poulton IJ; Martin TJ; Karsdal MA; Henriksen K
    Dev Biol; 2010 Aug; 344(2):1001-10. PubMed ID: 20599900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in the ultrastructural assessment of osteoclastic resorptive functions.
    Sasaki T
    Microsc Res Tech; 1996 Feb; 33(2):182-91. PubMed ID: 8845517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphologic features of bone in human osteopetrosis.
    Helfrich MH; Aronson DC; Everts V; Mieremet RH; Gerritsen EJ; Eckhardt PG; Groot CG; Scherft JP
    Bone; 1991; 12(6):411-9. PubMed ID: 1797056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of mouse osteoclast K-Cl Co-transporter-1 and its role during bone resorption.
    Kajiya H; Okamoto F; Li JP; Nakao A; Okabe K
    J Bone Miner Res; 2006 Jul; 21(7):984-92. PubMed ID: 16813519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent developments in the understanding of the pathophysiology of osteopetrosis.
    Felix R; Hofstetter W; Cecchini MG
    Eur J Endocrinol; 1996 Feb; 134(2):143-56. PubMed ID: 8630510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Mild Case of Autosomal Recessive Osteopetrosis Masquerading as the Dominant Form Involving Homozygous Deep Intronic Variations in the CLCN7 Gene.
    Hofstaetter JG; Atkins GJ; Kato H; Kogawa M; Blouin S; Misof BM; Roschger P; Evdokiou A; Yang D; Solomon LB; Findlay DM; Ito N
    Calcif Tissue Int; 2022 Oct; 111(4):430-444. PubMed ID: 35618777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteopetrosis in the rat: coexistence of reductions in osteocalcin and bone resorption.
    Lian JB; Marks SC
    Endocrinology; 1990 Feb; 126(2):955-62. PubMed ID: 2298176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dendritic cell-specific transmembrane protein DC-STAMP is essential for osteoclast fusion and osteoclast bone-resorbing activity.
    Miyamoto T
    Mod Rheumatol; 2006; 16(6):341-2. PubMed ID: 17164993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoclasts: more than 'bone eaters'.
    Charles JF; Aliprantis AO
    Trends Mol Med; 2014 Aug; 20(8):449-59. PubMed ID: 25008556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.