These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effects of spatial attention and salience cues on chromatic and achromatic motion processing. Dobkins KR; Rezec AA; Krekelberg B Vision Res; 2007 Jun; 47(14):1893-906. PubMed ID: 17445859 [TBL] [Abstract][Full Text] [Related]
3. Red-green chromatic mechanisms in normal aging and glaucomatous observers. Karwatsky P; Overbury O; Faubert J Invest Ophthalmol Vis Sci; 2004 Aug; 45(8):2861-6. PubMed ID: 15277514 [TBL] [Abstract][Full Text] [Related]
4. Contrast dependence of colour and luminance motion mechanisms in human vision. Hawken MJ; Gegenfurtner KR; Tang C Nature; 1994 Jan; 367(6460):268-70. PubMed ID: 8121491 [TBL] [Abstract][Full Text] [Related]
5. Channeling of red and green cone inputs to the zebrafish optomotor response. Orger MB; Baier H Vis Neurosci; 2005; 22(3):275-81. PubMed ID: 16079003 [TBL] [Abstract][Full Text] [Related]
6. The detection of motion in chromatic stimuli: pedestals and masks. Cropper SJ Vision Res; 2006 Mar; 46(5):724-38. PubMed ID: 16112703 [TBL] [Abstract][Full Text] [Related]
7. Luminance mechanisms mediate the motion of red-green isoluminant gratings: the role of "temporal chromatic aberration". Mullen KT; Yoshizawa T; Baker CL Vision Res; 2003 May; 43(11):1235-47. PubMed ID: 12726830 [TBL] [Abstract][Full Text] [Related]
8. The detection of motion in chromatic stimuli: first-order and second-order spatial structure. Cropper SJ Vision Res; 2005 Mar; 45(7):865-80. PubMed ID: 15644227 [TBL] [Abstract][Full Text] [Related]
9. Isoluminance and chromatic motion perception throughout the visual field. Bilodeau L; Faubert J Vision Res; 1997 Aug; 37(15):2073-81. PubMed ID: 9327055 [TBL] [Abstract][Full Text] [Related]
10. The oblique effect with colour defined motion throughout the visual field. Bilodeau L; Faubert J Vision Res; 1999 Feb; 39(4):757-63. PubMed ID: 10341962 [TBL] [Abstract][Full Text] [Related]
11. Human visual system integrates color signals along a motion trajectory. Nishida S; Watanabe J; Kuriki I; Tokimoto T Curr Biol; 2007 Feb; 17(4):366-72. PubMed ID: 17291762 [TBL] [Abstract][Full Text] [Related]
12. Amplitude of the transient visual evoked potential (tVEP) as a function of achromatic and chromatic contrast: contribution of different visual pathways. Souza GS; Gomes BD; Lacerda EM; Saito CA; da Silva Filho M; Silveira LC Vis Neurosci; 2008; 25(3):317-25. PubMed ID: 18321403 [TBL] [Abstract][Full Text] [Related]
13. Infant color vision: motion nulls for red/green vs luminance-modulated stimuli in infants and adults. Teller DY; Palmer J Vision Res; 1996 Apr; 36(7):955-74. PubMed ID: 8736256 [TBL] [Abstract][Full Text] [Related]
14. Effects of monochromatic and chromatic oblique aberrations on visual performance during spectacle lens wear. Tang CY; Charman WN Ophthalmic Physiol Opt; 1992 Jul; 12(3):340-9. PubMed ID: 1454372 [TBL] [Abstract][Full Text] [Related]
16. Resolution of binocular rivalry: Perceptual misbinding of color. Hong SW; Shevell SK Vis Neurosci; 2006; 23(3-4):561-6. PubMed ID: 16961996 [TBL] [Abstract][Full Text] [Related]
17. What happens if it changes color when it moves?: psychophysical experiments on the nature of chromatic input to motion detectors. Dobkins KR; Albright TD Vision Res; 1993 May; 33(8):1019-36. PubMed ID: 8506643 [TBL] [Abstract][Full Text] [Related]
18. Form and motion from colour in cerebral achromatopsia. Heywood CA; Kentridge RW; Cowey A Exp Brain Res; 1998 Nov; 123(1-2):145-53. PubMed ID: 9835403 [TBL] [Abstract][Full Text] [Related]
19. When S-cones contribute to chromatic global motion processing. Ruppertsberg AI; Wuerger SM; Bertamini M Vis Neurosci; 2007; 24(1):1-8. PubMed ID: 17430604 [TBL] [Abstract][Full Text] [Related]
20. The perception of motion in chromatic stimuli. Cropper SJ; Wuerger SM Behav Cogn Neurosci Rev; 2005 Sep; 4(3):192-217. PubMed ID: 16510893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]