These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 10963740)

  • 61. Neurotrophin 3 potentiates glutamatergic responses of IHC afferents in the cochlea in vivo.
    Oestreicher E; Knipper M; Arnold A; Zenner HP; Felix D
    Eur J Neurosci; 2000 May; 12(5):1584-90. PubMed ID: 10792436
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Some behavioral effects of AMPA/kainate receptor agonist and antagonists.
    Członkowska A; Siemiatkowski M; Płaźnik A
    J Physiol Pharmacol; 1997 Sep; 48(3):479-88. PubMed ID: 9376630
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of GYKI 52466 and CNQX, AMPA/kainate receptor antagonists, on the micturition reflex in the rat.
    Yoshiyama M; Roppolo JR; de Groat WC
    Brain Res; 1995 Sep; 691(1-2):185-94. PubMed ID: 8590052
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Pathophysiology of oligodendroglial excitotoxicity.
    Yoshioka A; Bacskai B; Pleasure D
    J Neurosci Res; 1996 Nov; 46(4):427-37. PubMed ID: 8950702
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dopamine regulates the glutamatergic inner hair cell activity in guinea pigs.
    Oestreicher E; Arnold W; Ehrenberger K; Felix D
    Hear Res; 1997 May; 107(1-2):46-52. PubMed ID: 9165346
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The glutamate receptor agonist, AMPA, induces acetylcholine release in guinea pig cochlea; a microdialysis study.
    Hoya N; Ogawa K; Inoue Y; Takiguchi Y; Kanzaki J
    Neurosci Lett; 2001 Oct; 311(3):206-8. PubMed ID: 11578830
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Contributions of AMPA- and kainate-sensitive receptors to the photopic electroretinogram of the Xenopus retina.
    Szikra T; Witkovsky P
    Vis Neurosci; 2001; 18(2):187-96. PubMed ID: 11417793
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Binding of the AMPA receptor antagonist [3H]GYKI 53405 to Xenopus brain membranes.
    Szabó G; Henley JM
    Neuroreport; 1993 Oct; 5(1):93-4. PubMed ID: 7506593
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Synaptic regeneration and functional recovery after excitotoxic injury in the guinea pig cochlea.
    Puel JL; Saffiedine S; Gervais d'Aldin C; Eybalin M; Pujol R
    C R Acad Sci III; 1995 Jan; 318(1):67-75. PubMed ID: 7538893
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Participation of NMDA and non-NMDA excitatory amino acid receptors in the mediation of spinal reflex potentials in rats: an in vivo study.
    Farkas S; Ono H
    Br J Pharmacol; 1995 Mar; 114(6):1193-205. PubMed ID: 7620709
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures.
    Kristensen BW; Noraberg J; Zimmer J
    Brain Res; 2001 Oct; 917(1):21-44. PubMed ID: 11602227
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Expression of functional kainate and AMPA receptors in developing lateral superior olive neurons of the rat.
    Vitten H; Reusch M; Friauf E; Löhrke S
    J Neurobiol; 2004 Jun; 59(3):272-88. PubMed ID: 15146545
    [TBL] [Abstract][Full Text] [Related]  

  • 73. GYKI 52466 protects against non-NMDA receptor-mediated excitotoxicity in primary rat hippocampal cultures.
    May PC; Robison PM
    Neurosci Lett; 1993 Apr; 152(1-2):169-72. PubMed ID: 8100052
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Inherent desensitisation-preventing properties of a novel, subtype-selective AMPA receptor agonist, (S)-CPW 399, as a possible explanation for its excitotoxic action in cultured cerebellar granule cells.
    Sinclair C; Reavy H; Grieve A; Schousboe A; Morelli E; Novellino E; Campiani G; Griffiths R
    Neurochem Int; 2003 May; 42(6):499-510. PubMed ID: 12547649
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Regulation of spontaneous inhibitory synaptic transmission by endogenous glutamate via non-NMDA receptors in cultured rat hippocampal neurons.
    Vignes M
    Neuropharmacology; 2001 May; 40(6):737-48. PubMed ID: 11369028
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Disruption of operant oral self-administration of ethanol, sucrose, and saccharin by the AMPA/kainate antagonist, NBQX, but not the AMPA antagonist, GYKI 52466.
    Stephens DN; Brown G
    Alcohol Clin Exp Res; 1999 Dec; 23(12):1914-20. PubMed ID: 10630610
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cobalt accumulation in neurons expressing ionotropic excitatory amino acid receptors in young rat spinal cord: morphology and distribution.
    Nagy I; Woolf CJ; Dray A; Urbán L
    J Comp Neurol; 1994 Jun; 344(3):321-35. PubMed ID: 8063957
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cochlear kainate receptors.
    Peppi M; Landa M; Sewell WF
    J Assoc Res Otolaryngol; 2012 Apr; 13(2):199-208. PubMed ID: 22231646
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Electrophysiological evidence for the presence of NMDA receptors in the guinea pig cochlea.
    Puel JL; Ladrech S; Chabert R; Pujol R; Eybalin M
    Hear Res; 1991 Feb; 51(2):255-64. PubMed ID: 1674507
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Protection from high pressure induced hyperexcitability by the AMPA/kainate receptor antagonists GYKI 52466 and LY 293558.
    Pearce PC; Maclean CJ; Shergill HK; Ward EM; Halsey MJ; Tindley G; Pearson J; Meldrum BS
    Neuropharmacology; 1994 May; 33(5):605-12. PubMed ID: 7936094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.