These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10964040)

  • 1. Evaluation of four blood pump geometries: fluorescent particle flow visualisation technique.
    Rose ML; Mackay TG; Wheatley DJ
    Med Eng Phys; 2000 Apr; 22(3):201-14. PubMed ID: 10964040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution fluorescent particle-tracking flow visualization within an intraventricular axial flow left ventricular assist device.
    Kerrigan JP; Yamazaki K; Meyer RK; Mori T; Otake Y; Outa E; Umezu M; Borovetz HS; Kormos RL; Griffith BP; Koyanagi H; Antaki JF
    Artif Organs; 1996 Jun; 20(6):534-40. PubMed ID: 8817951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of four blood pump geometries: the optical tracer technique.
    Rose ML; Mackay TG; Martin W; Wheatley DJ
    Proc Inst Mech Eng H; 2000; 214(4):371-83. PubMed ID: 10997058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fluid mechanics of a sac-type ventricular assist device.
    Clark C; Jin W; Glaser A
    Int J Artif Organs; 1990 Dec; 13(12):814-22. PubMed ID: 2289834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of secondary flow in centrifugal blood pumps using a flow visualization method with a high-speed video camera.
    Sakuma I; Fukui Y; Dohi T
    Artif Organs; 1996 Jun; 20(6):541-5. PubMed ID: 8817952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of scaling on centrifugal blood pumps.
    Wong YW; Chan WK; Yu SC; Chua LP
    Artif Organs; 2002 Nov; 26(11):998-1001. PubMed ID: 12406160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A flow visualization study of centrifugal blood pumps developed for long-term usage.
    Araki K; Taenaka Y; Masuzawa T; Inoue K; Nakatani T; Kinoshita M; Akagi H; Baba Y; Matsuo Y; Sakaki M
    Artif Organs; 1993 May; 17(5):307-12. PubMed ID: 8507164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereo-particle image velocimetry measurements of a patient-specific Fontan physiology utilizing novel pressure augmentation stents.
    Chopski SG; Rangus OM; Fox CS; Moskowitz WB; Throckmorton AL
    Artif Organs; 2015 Mar; 39(3):228-36. PubMed ID: 25597518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Cone-Shaped Bend Inlet Cannulas of an Axial Blood Pump on Thrombus Formation: An Experiment and Simulation Study.
    Liu G; Zhou J; Sun H; Zhang Y; Chen H; Hu S
    Med Sci Monit; 2017 Apr; 23():1655-1661. PubMed ID: 28379938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid dynamic characterization of operating conditions for continuous flow blood pumps.
    Wu ZJ; Antaki JF; Burgreen GW; Butler KC; Thomas DC; Griffith BP
    ASAIO J; 1999; 45(5):442-9. PubMed ID: 10503623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A preliminary flow visualization study in a multiple disk centrifugal artificial ventricle.
    Miller GE; Madigan M; Fink R
    Artif Organs; 1995 Jul; 19(7):680-4. PubMed ID: 8572973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of Centrifugal Pump Characteristic Dimensions for Mechanical Circulatory Support Devices.
    Korakianitis T; Rezaienia MA; Paul GM; Rahideh A; Rothman MT; Mozafari S
    ASAIO J; 2016; 62(5):545-51. PubMed ID: 27258221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of the Fluid Viscosity in a Mock Circulation.
    Boës S; Ochsner G; Amacher R; Petrou A; Meboldt M; Schmid Daners M
    Artif Organs; 2018 Jan; 42(1):68-77. PubMed ID: 28718516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Platelet deposition estimation: A novel method for emulating the pump thrombosis potential of blood pumps.
    Liu GM; Zhang Y; Chen HB; Hou JF; Jin DH; Gui XM; Hu SS
    Artif Organs; 2020 May; 44(5):465-472. PubMed ID: 31853998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The flow patterns within the impeller passages of a centrifugal blood pump model.
    Yu SC; Ng BT; Chan WK; Chua LP
    Med Eng Phys; 2000 Jul; 22(6):381-93. PubMed ID: 11086249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.
    Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U
    Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Progress in the Novel Pediatric Rotary Blood Pump Sputnik Development.
    Telyshev D; Denisov M; Pugovkin A; Selishchev S; Nesterenko I
    Artif Organs; 2018 Apr; 42(4):432-443. PubMed ID: 29508416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid manufacturing techniques in the development of an axial blood pump impeller.
    Chan WK; Wong YW; Chua CK; Lee CW; Feng C
    Proc Inst Mech Eng H; 2003; 217(6):469-75. PubMed ID: 14702984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow visualization studies to improve the spiral pump design.
    Andrade A; Biscegli J; Sousa JE; Ohashi Y; Nosé Y
    Artif Organs; 1997 Jul; 21(7):680-5. PubMed ID: 9212938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.