These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10964066)

  • 1. Spectro-temporal analysis of complex tones: two cortical processes dependent on retention of sounds in the long auditory store.
    Jones SJ; Vaz Pato M; Sprague L
    Clin Neurophysiol; 2000 Sep; 111(9):1569-76. PubMed ID: 10964066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The internal auditory clock: what can evoked potentials reveal about the analysis of temporal sound patterns, and abnormal states of consciousness?
    Jones SJ
    Neurophysiol Clin; 2002 Sep; 32(4):241-53. PubMed ID: 12448181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory evoked potentials to spectro-temporal modulation of complex tones in normal subjects and patients with severe brain injury.
    Jones SJ; Vaz Pato M; Sprague L; Stokes M; Munday R; Haque N
    Brain; 2000 May; 123 ( Pt 5)():1007-16. PubMed ID: 10775545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalp potentials to pitch change in rapid tone sequences. A correlate of sequential stream segregation.
    Hung J; Jones SJ; Vaz Pato M
    Exp Brain Res; 2001 Sep; 140(1):56-65. PubMed ID: 11500798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The auditory 'C-process': analyzing the spectral envelope of complex sounds.
    Jones SJ; Perez N
    Clin Neurophysiol; 2001 Jun; 112(6):965-75. PubMed ID: 11377253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mismatch negativity to single and multiple pitch-deviant tones in regular and pseudo-random complex tone sequences.
    Vaz Pato M; Jones SJ; Perez N; Sprague L
    Clin Neurophysiol; 2002 Apr; 113(4):519-27. PubMed ID: 11955996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of human auditory evoked potentials to the harmonicity of complex tones: evidence for dissociated cortical processes of spectral and periodicity analysis.
    Jones SJ
    Exp Brain Res; 2003 Jun; 150(4):506-14. PubMed ID: 12700880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical processing of complex tone stimuli: mismatch negativity at the end of a period of rapid pitch modulation.
    Vaz Pato M; Jones SJ
    Brain Res Cogn Brain Res; 1999 Jan; 7(3):295-306. PubMed ID: 9838170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory evoked potentials to abrupt pitch and timbre change of complex tones: electrophysiological evidence of 'streaming'?
    Jones SJ; Longe O; Vaz Pato M
    Electroencephalogr Clin Neurophysiol; 1998 Mar; 108(2):131-42. PubMed ID: 9566626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The auditory C-process of spectral profile analysis.
    Jones SJ; Perez N
    Clin Neurophysiol; 2002 Oct; 113(10):1558-65. PubMed ID: 12350431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Event-related brain potentials to change in the frequency and temporal structure of sounds in typically developing 5-6-year-old children.
    Ervast L; Hämäläinen JA; Zachau S; Lohvansuu K; Heinänen K; Veijola M; Heikkinen E; Suominen K; Luotonen M; Lehtihalmes M; Leppänen PH
    Int J Psychophysiol; 2015 Dec; 98(3 Pt 1):413-25. PubMed ID: 26342552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of spectral complexity and sound duration on automatic complex-sound pitch processing in humans - a mismatch negativity study.
    Tervaniemi M; Schröger E; Saher M; Näätänen R
    Neurosci Lett; 2000 Aug; 290(1):66-70. PubMed ID: 10925176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transitional Probabilities Are Prioritized over Stimulus/Pattern Probabilities in Auditory Deviance Detection: Memory Basis for Predictive Sound Processing.
    Mittag M; Takegata R; Winkler I
    J Neurosci; 2016 Sep; 36(37):9572-9. PubMed ID: 27629709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of frequency difference at which stream segregation precedes temporal integration as reflected by omission mismatch negativity.
    Hikita M; Shiga T; Osakabe Y; Mori Y; Hotsumi H; Nozaki M; Hoshino H; Kanno K; Itagaki S; Matsuoka T; Yabe H
    Biol Psychol; 2020 Mar; 151():107848. PubMed ID: 31981583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential grouping of tone sequence as reflected by the mismatch negativity.
    Kanoh S; Futami R; Hoshimiya N
    Biol Cybern; 2004 Dec; 91(6):388-95. PubMed ID: 15597177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory cortical onset responses revisited. I. First-spike timing.
    Heil P
    J Neurophysiol; 1997 May; 77(5):2616-41. PubMed ID: 9163380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deconvolution of magnetic acoustic change complex (mACC).
    Bardy F; McMahon CM; Yau SH; Johnson BW
    Clin Neurophysiol; 2014 Nov; 125(11):2220-2231. PubMed ID: 24704142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous storage of two complex temporal sound patterns in auditory sensory memory.
    Brattico E; Winkler I; Näätänen R; Paavilainen P; Tervaniemi M
    Neuroreport; 2002 Oct; 13(14):1747-51. PubMed ID: 12395116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditory pre-attentive processing of Chinese tones.
    Yang LJ; Cao KL; Wei CG; Liu YZ
    Chin Med J (Engl); 2008 Dec; 121(23):2429-33. PubMed ID: 19102963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.