These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 10964419)

  • 1. Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data.
    Davis TM; Wilson WD
    Anal Biochem; 2000 Sep; 284(2):348-53. PubMed ID: 10964419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of refractive index increment ratios for protein-nucleic acid complexes by surface plasmon resonance.
    Di Primo C; Lebars I
    Anal Biochem; 2007 Sep; 368(2):148-55. PubMed ID: 17659251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance.
    Tumolo T; Angnes L; Baptista MS
    Anal Biochem; 2004 Oct; 333(2):273-9. PubMed ID: 15450802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization and clustering of structurally defined oligosaccharides for sugar chips: an improved method for surface plasmon resonance analysis of protein-carbohydrate interactions.
    Suda Y; Arano A; Fukui Y; Koshida S; Wakao M; Nishimura T; Kusumoto S; Sobel M
    Bioconjug Chem; 2006; 17(5):1125-35. PubMed ID: 16984119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The analysis of entire gene promoters by surface plasmon resonance.
    Moyroud E; Reymond MC; Hamès C; Parcy F; Scutt CP
    Plant J; 2009 Sep; 59(5):851-8. PubMed ID: 19453452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomolecular interactions by Surface Plasmon Resonance technology.
    Torreri P; Ceccarini M; Macioce P; Petrucci TC
    Ann Ist Super Sanita; 2005; 41(4):437-41. PubMed ID: 16569911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aptamer-based Au nanoparticles-enhanced surface plasmon resonance detection of small molecules.
    Wang J; Zhou HS
    Anal Chem; 2008 Sep; 80(18):7174-8. PubMed ID: 18707133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes.
    Chien FC; Chen SJ
    Biosens Bioelectron; 2004 Oct; 20(3):633-42. PubMed ID: 15494249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile analysis of multiple macromolecular interactions by SPR imaging: application to p53 and DNA interaction.
    Maillart E; Brengel-Pesce K; Capela D; Roget A; Livache T; Canva M; Levy Y; Soussi T
    Oncogene; 2004 Jul; 23(32):5543-50. PubMed ID: 15184889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon resonance biosensing.
    Piliarik M; Vaisocherová H; Homola J
    Methods Mol Biol; 2009; 503():65-88. PubMed ID: 19151937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy.
    Shumaker-Parry JS; Campbell CT
    Anal Chem; 2004 Feb; 76(4):907-17. PubMed ID: 14961720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new surface plasmon resonance sensor for high-throughput screening applications.
    Piliarik M; Vaisocherová H; Homola J
    Biosens Bioelectron; 2005 Apr; 20(10):2104-10. PubMed ID: 15741081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fragment-based screening using surface plasmon resonance technology.
    Perspicace S; Banner D; Benz J; Müller F; Schlatter D; Huber W
    J Biomol Screen; 2009 Apr; 14(4):337-49. PubMed ID: 19403917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct optical detection of protein-ligand interactions.
    Gesellchen F; Zimmermann B; Herberg FW
    Methods Mol Biol; 2005; 305():17-46. PubMed ID: 15939992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Au NPs-aptamer conjugates as a powerful competitive reagent for ultrasensitive detection of small molecules by surface plasmon resonance spectroscopy.
    Wang J; Munir A; Zhou HS
    Talanta; 2009 Jun; 79(1):72-6. PubMed ID: 19376346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber-optic surface plasmon resonance for vapor phase analyses.
    Kim YC; Banerji S; Masson JF; Peng W; Booksh KS
    Analyst; 2005 Jun; 130(6):838-43. PubMed ID: 15912230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon resonance for probing quadruplex folding and interactions with proteins and small molecules.
    Redman JE
    Methods; 2007 Dec; 43(4):302-12. PubMed ID: 17967700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of compound structure on affinity, sequence selectivity, and mode of binding to DNA for unfused aromatic dications related to furamidine.
    Nguyen B; Tardy C; Bailly C; Colson P; Houssier C; Kumar A; Boykin DW; Wilson WD
    Biopolymers; 2002 Apr; 63(5):281-97. PubMed ID: 11877739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mining the oncoproteome and studying molecular interactions for biomarker development by 2DE, ChIP and SPR technologies.
    Ahmed FE
    Expert Rev Proteomics; 2008 Jun; 5(3):469-96. PubMed ID: 18532914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.
    Patching SG
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):43-55. PubMed ID: 23665295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.