BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 10964463)

  • 1. Designation of the anterior/posterior axis in pregastrula Xenopus laevis.
    Lane MC; Sheets MD
    Dev Biol; 2000 Sep; 225(1):37-58. PubMed ID: 10964463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BMP antagonism by Spemann's organizer regulates rostral-caudal fate of mesoderm.
    Constance Lane M; Davidson L; Sheets MD
    Dev Biol; 2004 Nov; 275(2):356-74. PubMed ID: 15501224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Spemann's organizer--it's origin and derivatives (cellular-tissue and molecular-genetic aspects)].
    Gorodilov IuN
    Tsitologiia; 2001; 43(2):182-203. PubMed ID: 11347475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-autonomous and inductive processes among three embryonic domains control dorsal-ventral and anterior-posterior development of Xenopus laevis.
    Sakai M
    Dev Growth Differ; 2008 Jan; 50(1):49-62. PubMed ID: 17999689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Spemann organizer of Xenopus is patterned along its anteroposterior axis at the earliest gastrula stage.
    Zoltewicz JS; Gerhart JC
    Dev Biol; 1997 Dec; 192(2):482-91. PubMed ID: 9441683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competence prepattern in the animal hemisphere of the 8-cell-stage Xenopus embryo.
    Kinoshita K; Bessho T; Asashima M
    Dev Biol; 1993 Nov; 160(1):276-84. PubMed ID: 8224543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm.
    Kikkawa M; Yamazaki M; Izutsu Y; MaƩno M
    Int J Dev Biol; 2001 Apr; 45(2):387-96. PubMed ID: 11330858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xenopus hairy2b specifies anterior prechordal mesoderm identity within Spemann's organizer.
    Yamaguti M; Cho KW; Hashimoto C
    Dev Dyn; 2005 Sep; 234(1):102-13. PubMed ID: 16059909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blastomere derivation and domains of gene expression in the Spemann Organizer of Xenopus laevis.
    Vodicka MA; Gerhart JC
    Development; 1995 Nov; 121(11):3505-18. PubMed ID: 8582265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytoplasmic localization and chordamesoderm induction in the frog embryo.
    Gimlich RL
    J Embryol Exp Morphol; 1985 Nov; 89 Suppl():89-111. PubMed ID: 3831222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of the dorsal marginal zone in Xenopus laevis analyzed by time-lapse microscopic magnetic resonance imaging.
    Papan C; Boulat B; Velan SS; Fraser SE; Jacobs RE
    Dev Biol; 2007 May; 305(1):161-71. PubMed ID: 17368611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The four animal blastomeres of the eight-cell stage of Xenopus laevis are intrinsically capable of differentiating into dorsal mesodermal derivatives.
    Grunz H
    Int J Dev Biol; 1994 Mar; 38(1):69-76. PubMed ID: 8074997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction into the Hall of Fame: tracing the lineage of Spemann's organizer.
    Harland R
    Development; 2008 Oct; 135(20):3321-3. PubMed ID: 18820177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of the germ layers along the animal-vegetal axis in Xenopus laevis.
    Yasuo H; Lemaire P
    Int J Dev Biol; 2001; 45(1):229-35. PubMed ID: 11291851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of activated MAP kinase in Xenopus laevis embryos: evaluating the roles of FGF and other signaling pathways in early induction and patterning.
    Curran KL; Grainger RM
    Dev Biol; 2000 Dec; 228(1):41-56. PubMed ID: 11087625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A concentration gradient of retinoids in the early Xenopus laevis embryo.
    Chen Y; Huang L; Solursh M
    Dev Biol; 1994 Jan; 161(1):70-6. PubMed ID: 7904969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origins of primitive blood in Xenopus: implications for axial patterning.
    Lane MC; Smith WC
    Development; 1999 Feb; 126(3):423-34. PubMed ID: 9876172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle specification in the Xenopus laevis gastrula-stage embryo.
    Wunderlich K; Gustin JK; Domingo CR
    Dev Dyn; 2005 Aug; 233(4):1348-58. PubMed ID: 15965978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early molecular effects of ethanol during vertebrate embryogenesis.
    Yelin R; Kot H; Yelin D; Fainsod A
    Differentiation; 2007 Jun; 75(5):393-403. PubMed ID: 17286601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dorsoventral polarization and formation of dorsal axial structures in Xenopus laevis: analyses using UV irradiation of the full-grown oocyte and after fertilization.
    Mise N; Wakahara M
    Int J Dev Biol; 1994 Sep; 38(3):447-53. PubMed ID: 7848828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.