These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 10964705)
1. Crystal structures of the ribonuclease MC1 from bitter gourd seeds, complexed with 2'-UMP or 3'-UMP, reveal structural basis for uridine specificity. Suzuki A; Yao M; Tanaka I; Numata T; Kikukawa S; Yamasaki N; Kimura M Biochem Biophys Res Commun; 2000 Aug; 275(2):572-6. PubMed ID: 10964705 [TBL] [Abstract][Full Text] [Related]
2. Crystal structures of the ribonuclease MC1 mutants N71T and N71S in complex with 5'-GMP: structural basis for alterations in substrate specificity. Numata T; Suzuki A; Kakuta Y; Kimura K; Yao M; Tanaka I; Yoshida Y; Ueda T; Kimura M Biochemistry; 2003 May; 42(18):5270-8. PubMed ID: 12731868 [TBL] [Abstract][Full Text] [Related]
3. Contribution of Gln9 and Phe80 to substrate binding in ribonuclease MC1 from bitter gourd seeds. Numata T; Kimura M J Biochem; 2001 Nov; 130(5):621-6. PubMed ID: 11686924 [TBL] [Abstract][Full Text] [Related]
4. Amino acid residues in ribonuclease MC1 from bitter gourd seeds which are essential for uridine specificity. Numata T; Suzuki A; Yao M; Tanaka I; Kimura M Biochemistry; 2001 Jan; 40(2):524-30. PubMed ID: 11148047 [TBL] [Abstract][Full Text] [Related]
5. Coulombic effects of remote subsites on the active site of ribonuclease A. Fisher BM; Schultz LW; Raines RT Biochemistry; 1998 Dec; 37(50):17386-401. PubMed ID: 9860854 [TBL] [Abstract][Full Text] [Related]
6. A single amino acid substitution changes ribonuclease 4 from a uridine-specific to a cytidine-specific enzyme. Hofsteenge J; Moldow C; Vicentini AM; Zelenko O; Jarai-Kote Z; Neumann U Biochemistry; 1998 Jun; 37(26):9250-7. PubMed ID: 9649305 [TBL] [Abstract][Full Text] [Related]
7. Expression and mutational analysis of amino acid residues involved in catalytic activity in a ribonuclease MC1 from the seeds of bitter gourd. Numata T; Kashiba T; Hino M; Funatsu G; Ishiguro M; Yamasaki N; Kimura M Biosci Biotechnol Biochem; 2000 Mar; 64(3):603-5. PubMed ID: 10803962 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus. Chon H; Matsumura H; Koga Y; Takano K; Kanaya S J Mol Biol; 2006 Feb; 356(1):165-78. PubMed ID: 16343535 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of a ribonuclease from the seeds of bitter gourd (Momordica charantia) at 1.75 A resolution. Nakagawa A; Tanaka I; Sakai R; Nakashima T; Funatsu G; Kimura M Biochim Biophys Acta; 1999 Aug; 1433(1-2):253-60. PubMed ID: 10446375 [TBL] [Abstract][Full Text] [Related]
10. Residues 36-42 of liver RNase PL3 contribute to its uridine-preferring substrate specificity. Cloning of the cDNA and site-directed mutagenesis studies. Vicentini AM; Hemmings BA; Hofsteenge J Protein Sci; 1994 Mar; 3(3):459-66. PubMed ID: 8019417 [TBL] [Abstract][Full Text] [Related]
11. Molecular basis for nucleotide-binding specificity: role of the exocyclic amino group "N2" in recognition by a guanylyl-ribonuclease. Schrift GL; Waldron TT; Timmons MA; Ramaswamy S; Kearney WR; Murphy KP J Mol Biol; 2006 Jan; 355(1):72-84. PubMed ID: 16300786 [TBL] [Abstract][Full Text] [Related]
12. Primary structure of porcine spleen ribonuclease: sequence homology. Kusano A; Iwama M; Sanda A; Suwa K; Nakaizumi E; Nakatani Y; Ohkawa H; Ohgi K; Irie M Acta Biochim Pol; 1997; 44(4):689-99. PubMed ID: 9584849 [TBL] [Abstract][Full Text] [Related]
13. Structural determinants of the uridine-preferring specificity of RNase PL3. Vicentini AM; Kote-Jarai Z; Hofsteenge J Biochemistry; 1996 Jul; 35(28):9128-32. PubMed ID: 8703917 [TBL] [Abstract][Full Text] [Related]
14. Crystal structures of the Nicotiana glutinosa ribonuclease NT in complex with nucleoside monophosphates. Kawano S; Kakuta Y; Nakashima T; Kimura M J Biochem; 2006 Sep; 140(3):375-81. PubMed ID: 16870673 [TBL] [Abstract][Full Text] [Related]
15. Amino acids conserved at the C-terminal half of the ribonuclease T2 family contribute to protein stability of the enzymes. Kimura K; Numata T; Kakuta Y; Kimura M Biosci Biotechnol Biochem; 2004 Aug; 68(8):1748-57. PubMed ID: 15322360 [TBL] [Abstract][Full Text] [Related]
16. Structure of the 16S rRNA pseudouridine synthase RsuA bound to uracil and UMP. Sivaraman J; Sauvé V; Larocque R; Stura EA; Schrag JD; Cygler M; Matte A Nat Struct Biol; 2002 May; 9(5):353-8. PubMed ID: 11953756 [TBL] [Abstract][Full Text] [Related]
17. The crystal structure of ribonuclease Rh from Rhizopus niveus at 2.0 A resolution. Kurihara H; Nonaka T; Mitsui Y; Ohgi K; Irie M; Nakamura KT J Mol Biol; 1996 Jan; 255(2):310-20. PubMed ID: 8551522 [TBL] [Abstract][Full Text] [Related]
18. The three-dimensional structure of human RNase 4, unliganded and complexed with d(Up), reveals the basis for its uridine selectivity. Terzyan SS; Peracaula R; de Llorens R; Tsushima Y; Yamada H; Seno M; Gomis-Rüth FX; Coll M J Mol Biol; 1999 Jan; 285(1):205-14. PubMed ID: 9878400 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of the complex of UMP/CMP kinase from Dictyostelium discoideum and the bisubstrate inhibitor P1-(5'-adenosyl) P5-(5'-uridyl) pentaphosphate (UP5A) and Mg2+ at 2.2 A: implications for water-mediated specificity. Scheffzek K; Kliche W; Wiesmüller L; Reinstein J Biochemistry; 1996 Jul; 35(30):9716-27. PubMed ID: 8703943 [TBL] [Abstract][Full Text] [Related]
20. Mutational analysis of the complex of human RNase inhibitor and human eosinophil-derived neurotoxin (RNase 2). Teufel DP; Kao RY; Acharya KR; Shapiro R Biochemistry; 2003 Feb; 42(6):1451-9. PubMed ID: 12578357 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]