BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

808 related articles for article (PubMed ID: 10964778)

  • 1. An in vitro transcription system that recapitulates equine infectious anemia virus tat-mediated inhibition of human immunodeficiency virus type 1 Tat activity demonstrates a role for positive transcription elongation factor b and associated proteins in the mechanism of Tat activation.
    Suñé C; Goldstrohm AC; Peng J; Price DH; Garcia-Blanco MA
    Virology; 2000 Sep; 274(2):356-66. PubMed ID: 10964778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory functions of Cdk9 and of cyclin T1 in HIV tat transactivation pathway gene expression.
    Romano G; Kasten M; De Falco G; Micheli P; Khalili K; Giordano A
    J Cell Biochem; 1999 Dec; 75(3):357-68. PubMed ID: 10536359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HIV-1 tat transcriptional activity is regulated by acetylation.
    Kiernan RE; Vanhulle C; Schiltz L; Adam E; Xiao H; Maudoux F; Calomme C; Burny A; Nakatani Y; Jeang KT; Benkirane M; Van Lint C
    EMBO J; 1999 Nov; 18(21):6106-18. PubMed ID: 10545121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tackling Tat.
    Karn J
    J Mol Biol; 1999 Oct; 293(2):235-54. PubMed ID: 10550206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclin T1 domains involved in complex formation with Tat and TAR RNA are critical for tat-activation.
    Ivanov D; Kwak YT; Nee E; Guo J; García-Martínez LF; Gaynor RB
    J Mol Biol; 1999 Apr; 288(1):41-56. PubMed ID: 10329125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription elongation factor P-TEFb mediates Tat activation of HIV-1 transcription at multiple stages.
    Zhou Q; Chen D; Pierstorff E; Luo K
    EMBO J; 1998 Jul; 17(13):3681-91. PubMed ID: 9649438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Canine cyclin T1 rescues equine infectious anemia virus tat trans-activation in human cells.
    Albrecht TR; Lund LH; Garcia-Blanco MA
    Virology; 2000 Mar; 268(1):7-11. PubMed ID: 10683321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between Tat and TAR and human immunodeficiency virus replication are facilitated by human cyclin T1 but not cyclins T2a or T2b.
    Wimmer J; Fujinaga K; Taube R; Cujec TP; Zhu Y; Peng J; Price DH; Peterlin BM
    Virology; 1999 Mar; 255(1):182-9. PubMed ID: 10049833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recruitment of cyclin T1/P-TEFb to an HIV type 1 long terminal repeat promoter proximal RNA target is both necessary and sufficient for full activation of transcription.
    Bieniasz PD; Grdina TA; Bogerd HP; Cullen BR
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7791-6. PubMed ID: 10393900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ability of positive transcription elongation factor B to transactivate human immunodeficiency virus transcription depends on a functional kinase domain, cyclin T1, and Tat.
    Fujinaga K; Cujec TP; Peng J; Garriga J; Price DH; Graña X; Peterlin BM
    J Virol; 1998 Sep; 72(9):7154-9. PubMed ID: 9696809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relief of two built-In autoinhibitory mechanisms in P-TEFb is required for assembly of a multicomponent transcription elongation complex at the human immunodeficiency virus type 1 promoter.
    Fong YW; Zhou Q
    Mol Cell Biol; 2000 Aug; 20(16):5897-907. PubMed ID: 10913173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Techniques to analyze the HIV-1 Tat and TAR RNA-dependent recruitment and activation of the cyclin T1: CDK9 (P-TEFb) transcription elongation factor.
    Gomes N; Garber ME; Jones KA
    Methods Enzymol; 2003; 371():324-36. PubMed ID: 14712711
    [No Abstract]   [Full Text] [Related]  

  • 13. Optimized chimeras between kinase-inactive mutant Cdk9 and truncated cyclin T1 proteins efficiently inhibit Tat transactivation and human immunodeficiency virus gene expression.
    Fujinaga K; Irwin D; Geyer M; Peterlin BM
    J Virol; 2002 Nov; 76(21):10873-81. PubMed ID: 12368330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the human and murine cyclin T proteins in regulating HIV-1 tat-activation.
    Kwak YT; Ivanov D; Guo J; Nee E; Gaynor RB
    J Mol Biol; 1999 Apr; 288(1):57-69. PubMed ID: 10329126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CDK9 autophosphorylation regulates high-affinity binding of the human immunodeficiency virus type 1 tat-P-TEFb complex to TAR RNA.
    Garber ME; Mayall TP; Suess EM; Meisenhelder J; Thompson NE; Jones KA
    Mol Cell Biol; 2000 Sep; 20(18):6958-69. PubMed ID: 10958691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulatory effect of splicing factors on transcriptional elongation.
    Fong YW; Zhou Q
    Nature; 2001 Dec 20-27; 414(6866):929-33. PubMed ID: 11780068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly divergent lentiviral Tat proteins activate viral gene expression by a common mechanism.
    Bieniasz PD; Grdina TA; Bogerd HP; Cullen BR
    Mol Cell Biol; 1999 Jul; 19(7):4592-9. PubMed ID: 10373508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat.
    Brès V; Gomes N; Pickle L; Jones KA
    Genes Dev; 2005 May; 19(10):1211-26. PubMed ID: 15905409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human and rodent transcription elongation factor P-TEFb: interactions with human immunodeficiency virus type 1 tat and carboxy-terminal domain substrate.
    Ramanathan Y; Reza SM; Young TM; Mathews MB; Pe'ery T
    J Virol; 1999 Jul; 73(7):5448-58. PubMed ID: 10364292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A real-time view of the TAR:Tat:P-TEFb complex at HIV-1 transcription sites.
    Molle D; Maiuri P; Boireau S; Bertrand E; Knezevich A; Marcello A; Basyuk E
    Retrovirology; 2007 May; 4():36. PubMed ID: 17537237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.