These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
808 related articles for article (PubMed ID: 10964778)
1. An in vitro transcription system that recapitulates equine infectious anemia virus tat-mediated inhibition of human immunodeficiency virus type 1 Tat activity demonstrates a role for positive transcription elongation factor b and associated proteins in the mechanism of Tat activation. Suñé C; Goldstrohm AC; Peng J; Price DH; Garcia-Blanco MA Virology; 2000 Sep; 274(2):356-66. PubMed ID: 10964778 [TBL] [Abstract][Full Text] [Related]
2. Regulatory functions of Cdk9 and of cyclin T1 in HIV tat transactivation pathway gene expression. Romano G; Kasten M; De Falco G; Micheli P; Khalili K; Giordano A J Cell Biochem; 1999 Dec; 75(3):357-68. PubMed ID: 10536359 [TBL] [Abstract][Full Text] [Related]
3. HIV-1 tat transcriptional activity is regulated by acetylation. Kiernan RE; Vanhulle C; Schiltz L; Adam E; Xiao H; Maudoux F; Calomme C; Burny A; Nakatani Y; Jeang KT; Benkirane M; Van Lint C EMBO J; 1999 Nov; 18(21):6106-18. PubMed ID: 10545121 [TBL] [Abstract][Full Text] [Related]
5. Cyclin T1 domains involved in complex formation with Tat and TAR RNA are critical for tat-activation. Ivanov D; Kwak YT; Nee E; Guo J; García-Martínez LF; Gaynor RB J Mol Biol; 1999 Apr; 288(1):41-56. PubMed ID: 10329125 [TBL] [Abstract][Full Text] [Related]
6. Transcription elongation factor P-TEFb mediates Tat activation of HIV-1 transcription at multiple stages. Zhou Q; Chen D; Pierstorff E; Luo K EMBO J; 1998 Jul; 17(13):3681-91. PubMed ID: 9649438 [TBL] [Abstract][Full Text] [Related]
7. Canine cyclin T1 rescues equine infectious anemia virus tat trans-activation in human cells. Albrecht TR; Lund LH; Garcia-Blanco MA Virology; 2000 Mar; 268(1):7-11. PubMed ID: 10683321 [TBL] [Abstract][Full Text] [Related]
8. Interactions between Tat and TAR and human immunodeficiency virus replication are facilitated by human cyclin T1 but not cyclins T2a or T2b. Wimmer J; Fujinaga K; Taube R; Cujec TP; Zhu Y; Peng J; Price DH; Peterlin BM Virology; 1999 Mar; 255(1):182-9. PubMed ID: 10049833 [TBL] [Abstract][Full Text] [Related]
9. Recruitment of cyclin T1/P-TEFb to an HIV type 1 long terminal repeat promoter proximal RNA target is both necessary and sufficient for full activation of transcription. Bieniasz PD; Grdina TA; Bogerd HP; Cullen BR Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7791-6. PubMed ID: 10393900 [TBL] [Abstract][Full Text] [Related]
10. The ability of positive transcription elongation factor B to transactivate human immunodeficiency virus transcription depends on a functional kinase domain, cyclin T1, and Tat. Fujinaga K; Cujec TP; Peng J; Garriga J; Price DH; Graña X; Peterlin BM J Virol; 1998 Sep; 72(9):7154-9. PubMed ID: 9696809 [TBL] [Abstract][Full Text] [Related]
11. Relief of two built-In autoinhibitory mechanisms in P-TEFb is required for assembly of a multicomponent transcription elongation complex at the human immunodeficiency virus type 1 promoter. Fong YW; Zhou Q Mol Cell Biol; 2000 Aug; 20(16):5897-907. PubMed ID: 10913173 [TBL] [Abstract][Full Text] [Related]
12. Techniques to analyze the HIV-1 Tat and TAR RNA-dependent recruitment and activation of the cyclin T1: CDK9 (P-TEFb) transcription elongation factor. Gomes N; Garber ME; Jones KA Methods Enzymol; 2003; 371():324-36. PubMed ID: 14712711 [No Abstract] [Full Text] [Related]
13. Optimized chimeras between kinase-inactive mutant Cdk9 and truncated cyclin T1 proteins efficiently inhibit Tat transactivation and human immunodeficiency virus gene expression. Fujinaga K; Irwin D; Geyer M; Peterlin BM J Virol; 2002 Nov; 76(21):10873-81. PubMed ID: 12368330 [TBL] [Abstract][Full Text] [Related]
14. Role of the human and murine cyclin T proteins in regulating HIV-1 tat-activation. Kwak YT; Ivanov D; Guo J; Nee E; Gaynor RB J Mol Biol; 1999 Apr; 288(1):57-69. PubMed ID: 10329126 [TBL] [Abstract][Full Text] [Related]
15. CDK9 autophosphorylation regulates high-affinity binding of the human immunodeficiency virus type 1 tat-P-TEFb complex to TAR RNA. Garber ME; Mayall TP; Suess EM; Meisenhelder J; Thompson NE; Jones KA Mol Cell Biol; 2000 Sep; 20(18):6958-69. PubMed ID: 10958691 [TBL] [Abstract][Full Text] [Related]
16. Stimulatory effect of splicing factors on transcriptional elongation. Fong YW; Zhou Q Nature; 2001 Dec 20-27; 414(6866):929-33. PubMed ID: 11780068 [TBL] [Abstract][Full Text] [Related]
17. Highly divergent lentiviral Tat proteins activate viral gene expression by a common mechanism. Bieniasz PD; Grdina TA; Bogerd HP; Cullen BR Mol Cell Biol; 1999 Jul; 19(7):4592-9. PubMed ID: 10373508 [TBL] [Abstract][Full Text] [Related]
18. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Brès V; Gomes N; Pickle L; Jones KA Genes Dev; 2005 May; 19(10):1211-26. PubMed ID: 15905409 [TBL] [Abstract][Full Text] [Related]
19. Human and rodent transcription elongation factor P-TEFb: interactions with human immunodeficiency virus type 1 tat and carboxy-terminal domain substrate. Ramanathan Y; Reza SM; Young TM; Mathews MB; Pe'ery T J Virol; 1999 Jul; 73(7):5448-58. PubMed ID: 10364292 [TBL] [Abstract][Full Text] [Related]
20. A real-time view of the TAR:Tat:P-TEFb complex at HIV-1 transcription sites. Molle D; Maiuri P; Boireau S; Bertrand E; Knezevich A; Marcello A; Basyuk E Retrovirology; 2007 May; 4():36. PubMed ID: 17537237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]