These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 10964962)

  • 1. Coordinated transitions in neurotransmitter systems for the initiation and propagation of spontaneous retinal waves.
    Zhou ZJ; Zhao D
    J Neurosci; 2000 Sep; 20(17):6570-7. PubMed ID: 10964962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A critical role of the strychnine-sensitive glycinergic system in spontaneous retinal waves of the developing rabbit.
    Zhou ZJ
    J Neurosci; 2001 Jul; 21(14):5158-68. PubMed ID: 11438591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous waves in the ventricular zone of developing mammalian retina.
    Syed MM; Lee S; He S; Zhou ZJ
    J Neurophysiol; 2004 May; 91(5):1999-2009. PubMed ID: 14681336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nicotinic and muscarinic modulations of excitatory synaptic transmission in the rat prefrontal cortex in vitro.
    Vidal C; Changeux JP
    Neuroscience; 1993 Sep; 56(1):23-32. PubMed ID: 7901807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves.
    Feller MB; Wellis DP; Stellwagen D; Werblin FS; Shatz CJ
    Science; 1996 May; 272(5265):1182-7. PubMed ID: 8638165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nicotine recruits a local glutamatergic circuit to excite septohippocampal GABAergic neurons.
    Wu M; Hajszan T; Leranth C; Alreja M
    Eur J Neurosci; 2003 Sep; 18(5):1155-68. PubMed ID: 12956714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits.
    Xu HP; Burbridge TJ; Ye M; Chen M; Ge X; Zhou ZJ; Crair MC
    J Neurosci; 2016 Mar; 36(13):3871-86. PubMed ID: 27030771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina.
    Syed MM; Lee S; Zheng J; Zhou ZJ
    J Physiol; 2004 Oct; 560(Pt 2):533-49. PubMed ID: 15308679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potentiation of L-type calcium channels reveals nonsynaptic mechanisms that correlate spontaneous activity in the developing mammalian retina.
    Singer JH; Mirotznik RR; Feller MB
    J Neurosci; 2001 Nov; 21(21):8514-22. PubMed ID: 11606640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic and extrasynaptic factors governing glutamatergic retinal waves.
    Blankenship AG; Ford KJ; Johnson J; Seal RP; Edwards RH; Copenhagen DR; Feller MB
    Neuron; 2009 Apr; 62(2):230-41. PubMed ID: 19409268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscarinic receptor activation elicits sustained, recurring depolarizations in reticulospinal neurons.
    Smetana RW; Alford S; Dubuc R
    J Neurophysiol; 2007 May; 97(5):3181-92. PubMed ID: 17344371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of acetylcholine and glutamate blockade on the spatiotemporal dynamics of retinal waves.
    Sernagor E; Eglen SJ; O'Donovan MJ
    J Neurosci; 2000 Jan; 20(2):RC56. PubMed ID: 10632622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity-dependent regulation of substance P expression and topographic map maintenance by a cholinergic pathway.
    Tu S; Butt CM; Pauly JR; Debski EA
    J Neurosci; 2000 Jul; 20(14):5346-57. PubMed ID: 10884319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular mechanisms underlying spatiotemporal features of cholinergic retinal waves.
    Ford KJ; Félix AL; Feller MB
    J Neurosci; 2012 Jan; 32(3):850-63. PubMed ID: 22262883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mice lacking specific nicotinic acetylcholine receptor subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming ON and OFF circuits in the inner retina.
    Bansal A; Singer JH; Hwang BJ; Xu W; Beaudet A; Feller MB
    J Neurosci; 2000 Oct; 20(20):7672-81. PubMed ID: 11027228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nicotinic and muscarinic acetylcholine receptors shape ganglion cell response properties.
    Strang CE; Long Y; Gavrikov KE; Amthor FR; Keyser KT
    J Neurophysiol; 2015 Jan; 113(1):203-17. PubMed ID: 25298382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical imaging of large-scale correlated wave activity in the developing rat CNS.
    Momose-Sato Y; Honda Y; Sasaki H; Sato K
    J Neurophysiol; 2005 Aug; 94(2):1606-22. PubMed ID: 15872071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nicotinic receptors regulate the release of glycine onto lamina X neurones of the rat spinal cord.
    Bradaïa A; Trouslard J
    Neuropharmacology; 2002 Nov; 43(6):1044-54. PubMed ID: 12423674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro pharmacologic characterization of a cholinergic receptor on outer hair cells.
    Erostegui C; Norris CH; Bobbin RP
    Hear Res; 1994 Apr; 74(1-2):135-47. PubMed ID: 8040084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct participation of starburst amacrine cells in spontaneous rhythmic activities in the developing mammalian retina.
    Zhou ZJ
    J Neurosci; 1998 Jun; 18(11):4155-65. PubMed ID: 9592095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.