These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 10965049)
1. Common architecture of the primary galactose binding sites of Erythrina corallodendron lectin and heat-labile enterotoxin from Escherichia coli in relation to the binding of branched neolactohexaosylceramide. Teneberg S; Berntsson A; Angström J J Biochem; 2000 Sep; 128(3):481-91. PubMed ID: 10965049 [TBL] [Abstract][Full Text] [Related]
2. Structures of the Erythrina corallodendron lectin and of its complexes with mono- and disaccharides. Elgavish S; Shaanan B J Mol Biol; 1998 Apr; 277(4):917-32. PubMed ID: 9545381 [TBL] [Abstract][Full Text] [Related]
3. Mutational studies of the amino acid residues in the combining site of Erythrina corallodendron lectin. Adar R; Sharon N Eur J Biochem; 1996 Aug; 239(3):668-74. PubMed ID: 8774711 [TBL] [Abstract][Full Text] [Related]
4. Crystal structures exploring the origins of the broader specificity of escherichia coli heat-labile enterotoxin compared to cholera toxin. Holmner A; Mackenzie A; Okvist M; Jansson L; Lebens M; Teneberg S; Krengel U J Mol Biol; 2011 Feb; 406(3):387-402. PubMed ID: 21168418 [TBL] [Abstract][Full Text] [Related]
5. Structural foundation for the design of receptor antagonists targeting Escherichia coli heat-labile enterotoxin. Merritt EA; Sarfaty S; Feil IK; Hol WG Structure; 1997 Nov; 5(11):1485-99. PubMed ID: 9384564 [TBL] [Abstract][Full Text] [Related]
6. Modification by site-directed mutagenesis of the specificity of Erythrina corallodendron lectin for galactose derivatives with bulky substituents at C-2. Arango R; Rodriguez-Arango E; Adar R; Belenky D; Loontiens FG; Rozenblatt S; Sharon N FEBS Lett; 1993 Sep; 330(2):133-6. PubMed ID: 8365483 [TBL] [Abstract][Full Text] [Related]
7. Exploration of the GM1 receptor-binding site of heat-labile enterotoxin and cholera toxin by phenyl-ring-containing galactose derivatives. Fan E; Merritt EA; Zhang Z; Pickens JC; Roach C; Ahn M; Hol WG Acta Crystallogr D Biol Crystallogr; 2001 Feb; 57(Pt 2):201-12. PubMed ID: 11173465 [TBL] [Abstract][Full Text] [Related]
8. Unexpected carbohydrate cross-binding by Escherichia coli heat-labile enterotoxin. Recognition of human and rabbit target cell glycoconjugates in comparison with cholera toxin. Karlsson KA; Teneberg S; Angström J; Kjellberg A; Hirst TR; Berström J; Miller-Podraza H Bioorg Med Chem; 1996 Nov; 4(11):1919-28. PubMed ID: 9007276 [TBL] [Abstract][Full Text] [Related]
9. Galactose-binding site in Escherichia coli heat-labile enterotoxin (LT) and cholera toxin (CT). Merritt EA; Sixma TK; Kalk KH; van Zanten BA; Hol WG Mol Microbiol; 1994 Aug; 13(4):745-53. PubMed ID: 7997185 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LT-IIa, and LT-IIb. Fukuta S; Magnani JL; Twiddy EM; Holmes RK; Ginsburg V Infect Immun; 1988 Jul; 56(7):1748-53. PubMed ID: 3290106 [TBL] [Abstract][Full Text] [Related]
11. Redefinition of the carbohydrate specificity of Erythrina corallodendron lectin based on solid-phase binding assays and molecular modeling of native and recombinant forms obtained by site-directed mutagenesis. Moreno E; Teneberg S; Adar R; Sharon N; Karlsson KA; Angström J Biochemistry; 1997 Apr; 36(15):4429-37. PubMed ID: 9109650 [TBL] [Abstract][Full Text] [Related]
12. Structure-based exploration of the ganglioside GM1 binding sites of Escherichia coli heat-labile enterotoxin and cholera toxin for the discovery of receptor antagonists. Minke WE; Roach C; Hol WG; Verlinde CL Biochemistry; 1999 May; 38(18):5684-92. PubMed ID: 10231518 [TBL] [Abstract][Full Text] [Related]
13. Using a galactose library for exploration of a novel hydrophobic pocket in the receptor binding site of the Escherichia coli heat-labile enterotoxin. Minke WE; Hong F; Verlinde CL; Hol WG; Fan E J Biol Chem; 1999 Nov; 274(47):33469-73. PubMed ID: 10559230 [TBL] [Abstract][Full Text] [Related]
14. Biochemical and structural characterization of the novel sialic acid-binding site of Escherichia coli heat-labile enterotoxin LT-IIb. Zalem D; Ribeiro JP; Varrot A; Lebens M; Imberty A; Teneberg S Biochem J; 2016 Nov; 473(21):3923-3936. PubMed ID: 27562297 [TBL] [Abstract][Full Text] [Related]
15. The heat-labile enterotoxin of Escherichia coli binds to polylactosaminoglycan-containing receptors in CaCo-2 human intestinal epithelial cells. Orlandi PA; Critchley DR; Fishman PH Biochemistry; 1994 Nov; 33(43):12886-95. PubMed ID: 7947695 [TBL] [Abstract][Full Text] [Related]
16. High-resolution crystal structures of Erythrina cristagalli lectin in complex with lactose and 2'-alpha-L-fucosyllactose and correlation with thermodynamic binding data. Svensson C; Teneberg S; Nilsson CL; Kjellberg A; Schwarz FP; Sharon N; Krengel U J Mol Biol; 2002 Aug; 321(1):69-83. PubMed ID: 12139934 [TBL] [Abstract][Full Text] [Related]
17. Specificity of Heggelund JE; Heim JB; Bajc G; Hodnik V; Anderluh G; Krengel U Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30736336 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamics of carbohydrate binding to galectin-1 from Chinese hamster ovary cells and two mutants. A comparison with four galactose-specific plant lectins. Gupta D; Cho M; Cummings RD; Brewer CF Biochemistry; 1996 Dec; 35(48):15236-43. PubMed ID: 8952472 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the glycolipid-binding specificities of cholera toxin and porcine Escherichia coli heat-labile enterotoxin: identification of a receptor-active non-ganglioside glycolipid for the heat-labile toxin in infant rabbit small intestine. Teneberg S; Hirst TR; Angström J; Karlsson KA Glycoconj J; 1994 Dec; 11(6):533-40. PubMed ID: 7696856 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the ganglioside recognition profile of Escherichia coli heat-labile enterotoxin LT-IIc. Zalem D; Juhás M; Terrinoni M; King-Lyons N; Lebens M; Varrot A; Connell TD; Teneberg S Glycobiology; 2022 Apr; 32(5):391-403. PubMed ID: 34972864 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]