These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 10965121)

  • 1. Direct visualization of the genomic distribution and organization of two cervid centromeric satellite DNA families.
    Li YC; Lee C; Hseu TH; Li SY; Lin CC
    Cytogenet Cell Genet; 2000; 89(3-4):192-8. PubMed ID: 10965121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A tandemly repetitive, centromeric DNA sequence from the Canadian woodland caribou (Rangifer tarandus caribou): its conservation and evolution in several deer species.
    Lee C; Ritchie DB; Lin CC
    Chromosome Res; 1994 Jul; 2(4):293-306. PubMed ID: 7921645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interstitial colocalization of two cervid satellite DNAs involved in the genesis of the Indian muntjac karyotype.
    Li YC; Lee C; Sanoudou D; Hseu TH; Li SY; Lin CC
    Chromosome Res; 2000; 8(5):363-73. PubMed ID: 10997777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical relationship between satellite I and II DNA in centromeric regions of sheep chromosomes.
    D'Aiuto L; Barsanti P; Mauro S; Cserpan I; Lanave C; Ciccarese S
    Chromosome Res; 1997 Sep; 5(6):375-81. PubMed ID: 9364939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human gamma X satellite DNA: an X chromosome specific centromeric DNA sequence.
    Lee C; Li X; Jabs EW; Court D; Lin CC
    Chromosoma; 1995 Nov; 104(2):103-12. PubMed ID: 8585987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and identification of a novel satellite DNA family highly conserved in several Cervidae species.
    Li YC; Lee C; Chang WS; Li SY; Lin CC
    Chromosoma; 2002 Sep; 111(3):176-83. PubMed ID: 12355207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conservation of a 31-bp bovine subrepeat in centromeric satellite DNA monomers of Cervus elaphus and other cervid species.
    Lee C; Lin CC
    Chromosome Res; 1996 Sep; 4(6):427-35. PubMed ID: 8889241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosomal distribution and organization of three cervid satellite DNAs in Chinese water deer (Hydropotes inermis).
    Lin CC; Li YC
    Cytogenet Genome Res; 2006; 114(2):147-54. PubMed ID: 16825767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning, characterization and physical mapping of three cervid satellite DNA families in the genome of the Formosan muntjac (Muntiacus reevesi micrurus).
    Lin CC; Chiang PY; Hsieh LJ; Liao SJ; Chao MC; Li YC
    Cytogenet Genome Res; 2004; 105(1):100-6. PubMed ID: 15218264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A satellite DNA element specific for roe deer (Capreolus capreolus).
    Buntjer JB; Nijman IJ; Zijlstra C; Lenstra JA
    Chromosoma; 1998 Mar; 107(1):1-5. PubMed ID: 9567196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New types of mouse centromeric satellite DNAs.
    Kuznetsova IS; Prusov AN; Enukashvily NI; Podgornaya OI
    Chromosome Res; 2005; 13(1):9-25. PubMed ID: 15791408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repetitive sequence families in Alces alces americana.
    Blake RD; Wang JZ; Beauregard L
    J Mol Evol; 1997 May; 44(5):509-20. PubMed ID: 9115175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of salmonid telomeric and centromeric satellite DNA sequences.
    Saito Y; Edpalina RR; Abe S
    Genetica; 2007 Oct; 131(2):157-66. PubMed ID: 17180439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA.
    Martins C; Ferreira IA; Oliveira C; Foresti F; Galetti PM
    Genetica; 2006 May; 127(1-3):133-41. PubMed ID: 16850219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two extended arrays of a satellite DNA sequence at the centromere and at the short-arm telomere of Chinese hamster chromosome 5.
    Faravelli M; Moralli D; Bertoni L; Attolini C; Chernova O; Raimondi E; Giulotto E
    Cytogenet Cell Genet; 1998; 83(3-4):281-6. PubMed ID: 10072604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swine centromeric DNA repeats revealed by primed in situ (PRINS) labeling.
    Rogel-Gaillard C; Hayes H; Coullin P; Chardon P; Vaiman M
    Cytogenet Cell Genet; 1997; 79(1-2):79-84. PubMed ID: 9533017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosome-specific alpha-satellite DNA from the centromere of chimpanzee chromosome 4.
    Haaf T; Willard HF
    Chromosoma; 1997 Sep; 106(4):226-32. PubMed ID: 9254724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organization and evolution of Gorilla centromeric DNA from old strategies to new approaches.
    Catacchio CR; Ragone R; Chiatante G; Ventura M
    Sci Rep; 2015 Sep; 5():14189. PubMed ID: 26387916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and chromosomal distribution of satellite DNA sequences of the water buffalo (Bubalus bubalis).
    Tanaka K; Matsuda Y; Masangkay JS; Solis CD; Anunciado RV; Namikawa T
    J Hered; 1999; 90(3):418-22. PubMed ID: 10355126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.