These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10965467)

  • 1. The Chlorella hexose/H(+)-symporters.
    Tanner W
    Int Rev Cytol; 2000; 200():101-41. PubMed ID: 10965467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alteration of substrate affinities and specificities of the Chlorella Hexose/H+ symporters by mutations and construction of chimeras.
    Will A; Grassl R; Erdmenger J; Caspari T; Tanner W
    J Biol Chem; 1998 May; 273(19):11456-62. PubMed ID: 9565557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Km mutants of the Chlorella monosaccharide/H+ cotransporter randomly generated by PCR.
    Will A; Caspari T; Tanner W
    Proc Natl Acad Sci U S A; 1994 Oct; 91(21):10163-7. PubMed ID: 7937856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular localization of the inducible Chlorella HUP1 monosaccharide-H+ symporter and cloning of a Co-induced galactose-H+ symporter.
    Stadler R; Wolf K; Hilgarth C; Tanner W; Sauer N
    Plant Physiol; 1995 Jan; 107(1):33-41. PubMed ID: 7870840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hexose/H+ symporters in lower and higher plants.
    Caspari T; Will A; Opekarová M; Sauer N; Tanner W
    J Exp Biol; 1994 Nov; 196():483-91. PubMed ID: 7823042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of a reconstituted eukaryotic hexose/proton symporter solubilized by structurally related non-ionic detergents: specific requirement of phosphatidylcholine for permease stability.
    Robl I; Grassl R; Tanner W; Opekarová M
    Biochim Biophys Acta; 2000 Feb; 1463(2):407-18. PubMed ID: 10675517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of the first external loop for substrate recognition as revealed by chimeric Chlorella monosaccharide/H+ symporters.
    Will A; Tanner W
    FEBS Lett; 1996 Feb; 381(1-2):127-30. PubMed ID: 8641420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of eukaryotic plasma membrane transporter HUP1 from Chlorella kessleri in Escherichia coli.
    Opekarová M; Robl I; Grassl R; Tanner W
    FEMS Microbiol Lett; 1999 May; 174(1):65-72. PubMed ID: 10234823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid raft-based membrane compartmentation of a plant transport protein expressed in Saccharomyces cerevisiae.
    Grossmann G; Opekarova M; Novakova L; Stolz J; Tanner W
    Eukaryot Cell; 2006 Jun; 5(6):945-53. PubMed ID: 16757742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification of the Chlorella HUP1 hexose-proton symporter to homogeneity and its reconstitution in vitro.
    Caspari T; Robl I; Stolz J; Tanner W
    Plant J; 1996 Dec; 10(6):1045-53. PubMed ID: 9011086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The C-terminal tetrapeptide HWFW of the Chlorella HUP1 hexose/H(+)-symporter is essential for full activity and an alpha-helical structure of the C-terminus.
    Grassl R; Robl I; Opekarovà M; Tanner W
    FEBS Lett; 2000 Feb; 468(2-3):225-30. PubMed ID: 10692591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The HUP1 gene product of Chlorella kessleri: H+/glucose symport studied in vitro.
    Opekarová M; Caspari T; Tanner W
    Biochim Biophys Acta; 1994 Aug; 1194(1):149-54. PubMed ID: 8075129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Chlorella hexose/H+ symporter is a useful selectable marker and biochemical reagent when expressed in Volvox.
    Hallmann A; Sumper M
    Proc Natl Acad Sci U S A; 1996 Jan; 93(2):669-73. PubMed ID: 8570613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure/function relationship of the Chlorella glucose/H+ symporter.
    Caspari T; Stadler R; Sauer N; Tanner W
    J Biol Chem; 1994 Feb; 269(5):3498-502. PubMed ID: 8106391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Chlorella H+/hexose cotransporter gene.
    Wolf K; Tanner W; Sauer N
    Curr Genet; 1991 Mar; 19(3):215-9. PubMed ID: 1868571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence alignment and homology threading reveals prokaryotic and eukaryotic proteins similar to lactose permease.
    Kasho VN; Smirnova IN; Kaback HR
    J Mol Biol; 2006 May; 358(4):1060-70. PubMed ID: 16574153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Kaback HR
    Protein Sci; 1993 Jun; 2(6):1024-33. PubMed ID: 8318887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis POLYOL TRANSPORTER5, a new member of the monosaccharide transporter-like superfamily, mediates H+-Symport of numerous substrates, including myo-inositol, glycerol, and ribose.
    Klepek YS; Geiger D; Stadler R; Klebl F; Landouar-Arsivaud L; Lemoine R; Hedrich R; Sauer N
    Plant Cell; 2005 Jan; 17(1):204-18. PubMed ID: 15598803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arginine 302 (helix IX) in the lactose permease of Escherichia coli is in close proximity to glutamate 269 (helix VIII) as well as glutamate 325.
    He MM; Voss J; Hubbell WL; Kaback HR
    Biochemistry; 1997 Nov; 36(44):13682-7. PubMed ID: 9354638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional estimation of loop-helix boundaries in the lactose permease of Escherichia coli by single amino acid deletion analysis.
    Wolin CD; Kaback HR
    Biochemistry; 2001 Feb; 40(7):1996-2003. PubMed ID: 11329266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.