These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 10966053)

  • 1. Self-organized dynamics in plastic neural networks: bistability and coherence.
    Kalitzin S; van Dijk BW; Spekreijse H
    Biol Cybern; 2000 Aug; 83(2):139-50. PubMed ID: 10966053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-tuning of neural circuits through short-term synaptic plasticity.
    Sussillo D; Toyoizumi T; Maass W
    J Neurophysiol; 2007 Jun; 97(6):4079-95. PubMed ID: 17409166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of correlated patterns with a configurable analog VLSI neural network of spiking neurons and self-regulating plastic synapses.
    Giulioni M; Pannunzi M; Badoni D; Dante V; Del Giudice P
    Neural Comput; 2009 Nov; 21(11):3106-29. PubMed ID: 19686067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2010 Nov; 103(5):365-86. PubMed ID: 20882297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning in realistic networks of spiking neurons and spike-driven plastic synapses.
    Mongillo G; Curti E; Romani S; Amit DJ
    Eur J Neurosci; 2005 Jun; 21(11):3143-60. PubMed ID: 15978023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potentiation decay of synapses and length distributions of synfire chains self-organized in recurrent neural networks.
    Miller A; Jin DZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062716. PubMed ID: 24483495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-organization of a neural network with heterogeneous neurons enhances coherence and stochastic resonance.
    Li X; Zhang J; Small M
    Chaos; 2009 Mar; 19(1):013126. PubMed ID: 19334990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure.
    Li X; Small M
    Chaos; 2012 Jun; 22(2):023104. PubMed ID: 22757511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.
    Alemi A; Baldassi C; Brunel N; Zecchina R
    PLoS Comput Biol; 2015 Aug; 11(8):e1004439. PubMed ID: 26291608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fading memory and time series prediction in recurrent networks with different forms of plasticity.
    Lazar A; Pipa G; Triesch J
    Neural Netw; 2007 Apr; 20(3):312-22. PubMed ID: 17556114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity--strengthening correlated input pathways.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):81-102. PubMed ID: 19536560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical condition for synchrony in a neural network with two periodic inputs.
    Hashizume Y; Araki O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012713. PubMed ID: 23410365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biologically plausible learning in neural networks: a lesson from bacterial chemotaxis.
    Shimansky YP
    Biol Cybern; 2009 Dec; 101(5-6):379-85. PubMed ID: 19844738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning the structure of correlated synaptic subgroups using stable and competitive spike-timing-dependent plasticity.
    Meffin H; Besson J; Burkitt AN; Grayden DB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041911. PubMed ID: 16711840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning real-world stimuli in a neural network with spike-driven synaptic dynamics.
    Brader JM; Senn W; Fusi S
    Neural Comput; 2007 Nov; 19(11):2881-912. PubMed ID: 17883345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental demonstration of associative memory with memristive neural networks.
    Pershin YV; Di Ventra M
    Neural Netw; 2010 Sep; 23(7):881-6. PubMed ID: 20605401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Acquiring new information in a neuronal network: from Hebb's concept to homeostatic plasticity].
    Le Roux N; Amar M; Fossier P
    J Soc Biol; 2008; 202(2):143-60. PubMed ID: 18547512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing the boundaries of high-connectivity network simulation with distributed computing.
    Morrison A; Mehring C; Geisel T; Aertsen AD; Diesmann M
    Neural Comput; 2005 Aug; 17(8):1776-801. PubMed ID: 15969917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A self-organizing short-term dynamical memory network.
    Federer C; Zylberberg J
    Neural Netw; 2018 Oct; 106():30-41. PubMed ID: 30007123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.