These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 10966766)

  • 21. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading.
    Colopy SA; Benz-Dean J; Barrett JG; Sample SJ; Lu Y; Danova NA; Kalscheur VL; Vanderby R; Markel MD; Muir P
    Bone; 2004 Oct; 35(4):881-91. PubMed ID: 15454095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stress intensity variations in bone microcracks during the repair process.
    Taylor D; Tilmans A
    J Theor Biol; 2004 Jul; 229(2):169-77. PubMed ID: 15207472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strontium administration in young chickens improves bone volume and architecture but does not enhance bone structural and material strength.
    Shahnazari M; Lang DH; Fosmire GJ; Sharkey NA; Mitchell AD; Leach RM
    Calcif Tissue Int; 2007 Mar; 80(3):160-6. PubMed ID: 17340224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sterilization by gamma radiation impairs the tensile fatigue life of cortical bone by two orders of magnitude.
    Akkus O; Belaney RM
    J Orthop Res; 2005 Sep; 23(5):1054-8. PubMed ID: 16140190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fatigue damage in cancellous bone: an experimental approach from continuum to micro scale.
    Dendorfer S; Maier HJ; Hammer J
    J Mech Behav Biomed Mater; 2009 Jan; 2(1):113-9. PubMed ID: 19627813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential effects of bone structural and material properties on bone competence in C57BL/6 and C3H/He inbred strains of mice.
    Voide R; van Lenthe GH; Müller R
    Calcif Tissue Int; 2008 Jul; 83(1):61-9. PubMed ID: 18545865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The fatigue strength of compact bone in torsion.
    Taylor D; O'Reilly P; Vallet L; Lee TC
    J Biomech; 2003 Aug; 36(8):1103-9. PubMed ID: 12831735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CART deficiency increases body weight but does not alter bone strength.
    Bartell SM; Isales CM; Baile CA; Kuhar MJ; Hamrick MW
    J Musculoskelet Neuronal Interact; 2008; 8(2):146-53. PubMed ID: 18622083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the role of bone damage in calcium homeostasis.
    Martínez-Reina J; García-Aznar JM; Domínguez J; Doblaré M
    J Theor Biol; 2008 Oct; 254(3):704-12. PubMed ID: 18625247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The behaviour of microcracks in compact bone.
    O'brien FJ; Hardiman DA; Hazenberg JG; Mercy MV; Mohsin S; Taylor D; Lee TC
    Eur J Morphol; 2005; 42(1-2):71-9. PubMed ID: 16123026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New insights into long-bone biomechanics: are limb safety factors invariable across mammalian species?
    Kokshenev VB
    J Biomech; 2007; 40(13):2911-8. PubMed ID: 17448481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Bone fracture and the healing mechanisms. Pathophysiology and classification of osteoporotic fractures].
    Kishimoto H
    Clin Calcium; 2009 May; 19(5):619-25. PubMed ID: 19398827
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of body size and cage profile on the shear strength of bones of caged layers.
    Harner JP; Wilson JH
    Br Poult Sci; 1985 Oct; 26(4):543-8. PubMed ID: 4075197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone as a structural material: how good is it?
    Taylor D
    Stud Health Technol Inform; 2008; 133():221-9. PubMed ID: 18431853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatigue damage, remodeling, and the minimization of skeletal weight.
    Martin RB
    J Theor Biol; 2003 Jan; 220(2):271-6. PubMed ID: 12602399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microdamage accumulation changes according to animal mass: an intraspecies investigation.
    Brianza SZ; D'Amelio P; Pugno N; Zini E; Zatelli A; Pluviano F; Cabiale K; Galloni M; Isaia GC
    Calcif Tissue Int; 2011 May; 88(5):409-15. PubMed ID: 21331568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Residual strength of equine bone is not reduced by intense fatigue loading: implications for stress fracture.
    Martin RB; Gibson VA; Stover SM; Gibeling JC; Griffin LV
    J Biomech; 1997 Feb; 30(2):109-14. PubMed ID: 9001930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bone formation after damaging in vivo fatigue loading results in recovery of whole-bone monotonic strength and increased fatigue life.
    Silva MJ; Touhey DC
    J Orthop Res; 2007 Feb; 25(2):252-61. PubMed ID: 17106875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo fatigue microcracks in human bone: material properties of the surrounding bone matrix.
    Zioupos P
    Eur J Morphol; 2005; 42(1-2):31-41. PubMed ID: 16123022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.