These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Probing beta-lactamase structure and function using random replacement mutagenesis. Palzkill T; Botstein D Proteins; 1992 Sep; 14(1):29-44. PubMed ID: 1329081 [TBL] [Abstract][Full Text] [Related]
3. An irregular beta-bulge common to a group of bacterial RNases is an important determinant of stability and function in barnase. Axe DD; Foster NW; Fersht AR J Mol Biol; 1999 Mar; 286(5):1471-85. PubMed ID: 10064710 [TBL] [Abstract][Full Text] [Related]
4. Amino acid sequence determinants of beta-lactamase structure and activity. Huang W; Petrosino J; Hirsch M; Shenkin PS; Palzkill T J Mol Biol; 1996 May; 258(4):688-703. PubMed ID: 8637002 [TBL] [Abstract][Full Text] [Related]
5. Identification of residues critical for metallo-beta-lactamase function by codon randomization and selection. Materon IC; Palzkill T Protein Sci; 2001 Dec; 10(12):2556-65. PubMed ID: 11714924 [TBL] [Abstract][Full Text] [Related]
6. Residues Distal to the Active Site Contribute to Enhanced Catalytic Activity of Variant and Hybrid β-Lactamases Derived from CTX-M-14 and CTX-M-15. He D; Chiou J; Zeng Z; Liu L; Chen X; Zeng L; Chan EW; Liu JH; Chen S Antimicrob Agents Chemother; 2015 Oct; 59(10):5976-83. PubMed ID: 26169409 [TBL] [Abstract][Full Text] [Related]
7. N-terminal amino-acid sequence of beta-lactamase from Shigella flexneri UCSF-129. Campos M; Bayer E; González H; Schmeer K; Stevanovic S; Jouchim H; Bocaz G; Vásquez O Microbios; 1995; 82(333):217-25. PubMed ID: 7476560 [TBL] [Abstract][Full Text] [Related]
8. Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as "spacers" which do not require a specific sequence. Markiewicz P; Kleina LG; Cruz C; Ehret S; Miller JH J Mol Biol; 1994 Jul; 240(5):421-33. PubMed ID: 8046748 [TBL] [Abstract][Full Text] [Related]
9. A search for single substitutions that eliminate enzymatic function in a bacterial ribonuclease. Axe DD; Foster NW; Fersht AR Biochemistry; 1998 May; 37(20):7157-66. PubMed ID: 9585527 [TBL] [Abstract][Full Text] [Related]
10. Active TEM-1 beta-lactamase mutants with random peptides inserted in three contiguous surface loops. Mathonet P; Deherve J; Soumillion P; Fastrez J Protein Sci; 2006 Oct; 15(10):2323-34. PubMed ID: 16963643 [TBL] [Abstract][Full Text] [Related]
11. TEM-89 beta-lactamase produced by a Proteus mirabilis clinical isolate: new complex mutant (CMT 3) with mutations in both TEM-59 (IRT-17) and TEM-3. Neuwirth C; Madec S; Siebor E; Pechinot A; Duez JM; Pruneaux M; Fouchereau-Peron M; Kazmierczak A; Labia R Antimicrob Agents Chemother; 2001 Dec; 45(12):3591-4. PubMed ID: 11709345 [TBL] [Abstract][Full Text] [Related]
12. Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity. Boix E; Wu Y; Vasandani VM; Saxena SK; Ardelt W; Ladner J; Youle RJ J Mol Biol; 1996 Apr; 257(5):992-1007. PubMed ID: 8632481 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of TTHA0252 from Thermus thermophilus HB8, a RNA degradation protein of the metallo-beta-lactamase superfamily. Ishikawa H; Nakagawa N; Kuramitsu S; Masui R J Biochem; 2006 Oct; 140(4):535-42. PubMed ID: 16945939 [TBL] [Abstract][Full Text] [Related]
14. Amino acid residues that contribute to substrate specificity of class A beta-lactamase SME-1. Majiduddin FK; Palzkill T Antimicrob Agents Chemother; 2005 Aug; 49(8):3421-7. PubMed ID: 16048956 [TBL] [Abstract][Full Text] [Related]
15. Contribution of the two conserved tryptophan residues to the catalytic and structural properties of Proteus mirabilis glutathione S-transferase B1-1. Allocati N; Masulli M; Pietracupa M; Favaloro B; Federici L; Di Ilio C Biochem J; 2005 Jan; 385(Pt 1):37-43. PubMed ID: 15320869 [TBL] [Abstract][Full Text] [Related]
16. Effect of disulfide-bond introduction on the activity and stability of the extended-spectrum class A beta-lactamase Toho-1. Shimizu-Ibuka A; Matsuzawa H; Sakai H Biochim Biophys Acta; 2006 Aug; 1764(8):1349-55. PubMed ID: 16890032 [TBL] [Abstract][Full Text] [Related]
17. Complete amino acid sequence of Proteus mirabilis PR catalase. Occurrence of a methionine sulfone in the close proximity of the active site. Buzy A; Bracchi V; Sterjiades R; Chroboczek J; Thibault P; Gagnon J; Jouve HM; Hudry-Clergeon G J Protein Chem; 1995 Feb; 14(2):59-72. PubMed ID: 7786407 [TBL] [Abstract][Full Text] [Related]
18. Functional control of the binuclear metal site in the metallo-beta-lactamase-like fold by subtle amino acid replacements. Gomes CM; Frazão C; Xavier AV; Legall J; Teixeira M Protein Sci; 2002 Mar; 11(3):707-12. PubMed ID: 11847294 [TBL] [Abstract][Full Text] [Related]
19. EstB from Burkholderia gladioli: a novel esterase with a beta-lactamase fold reveals steric factors to discriminate between esterolytic and beta-lactam cleaving activity. Wagner UG; Petersen EI; Schwab H; Kratky C Protein Sci; 2002 Mar; 11(3):467-78. PubMed ID: 11847270 [TBL] [Abstract][Full Text] [Related]
20. Insight into stereochemistry of a new IMP allelic variant (IMP-55) metallo-β-lactamase identified in a clinical strain of Acinetobacter baumannii. Shakibaie MR; Azizi O; Shahcheraghi F Infect Genet Evol; 2017 Jul; 51():118-126. PubMed ID: 28336429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]