BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 10967)

  • 1. Properties and subcellular distribution of guanylate cyclase activity in rat renal medulla: correlation with tissue content of guanosine 3',5'-monophosphate.
    Craven PA; DeRubertis FR
    Biochemistry; 1976 Nov; 15(23):5131-7. PubMed ID: 10967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of guanylate cyclase from rat liver and other tissues by sodium azide.
    Kimura H; Mittal CK; Murad F
    J Biol Chem; 1975 Oct; 250(20):8016-22. PubMed ID: 240848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guanylate cyclase from the rat renal medulla. Physical properties and comparison with adenylate cyclase.
    Neer EJ; Sukiennik EA
    J Biol Chem; 1975 Oct; 250(19):7905-9. PubMed ID: 240841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of particulate guanylate cyclase in plasma membranes and microsomes of rat liver.
    Kimura H; Murad F
    J Biol Chem; 1975 Jun; 250(12):4810-7. PubMed ID: 237912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution and different activation of adenylate cyclase by NaF and of guanylate cyclase by NaN3 in neuronal and glial cells separated from rat cerebral cortex.
    Nanba T; Ando M; Nagata Y; Kitajima S; Nakazawa K
    Brain Res; 1981 Aug; 218(1-2):267-77. PubMed ID: 6115697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhaled nitric oxide decreases pulmonary soluble guanylate cyclase protein levels in 1-month-old lambs.
    Thelitz S; Bekker JM; Ovadia B; Stuart RB; Johengen MJ; Black SM; Fineman JR
    J Thorac Cardiovasc Surg; 2004 May; 127(5):1285-92. PubMed ID: 15115984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased responsiveness of the hepatic guanylate cyclase-guanosine 3',5'-monophosphate system to nitrosoguanidine following partial hepatectomy.
    Briggs RG; Derubertis FR
    Biochim Biophys Acta; 1980 Apr; 628(4):425-37. PubMed ID: 6102869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential alterations in responsiveness in particulate and soluble guanylate cyclases in pregnant guinea pig myometrium.
    Buhimschi IA; San Martin-Clark O; Aguan K; Thompson LP; Weiner CP
    Am J Obstet Gynecol; 2000 Dec; 183(6):1512-9. PubMed ID: 11120520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A magnesium-dependent guanylate cyclase in cell-free preparations of Dictyostelium discoideum.
    Janssens PM; de Jong CC
    Biochem Biophys Res Commun; 1988 Jan; 150(1):405-11. PubMed ID: 2892490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of human erythrocyte Na+/H+ exchange by soluble and particulate guanylate cyclase.
    Petrov V; Lijnen P
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1556-64. PubMed ID: 8944639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory properties of magnesium-dependent guanylate cyclase in Dictyostelium discoideum membranes.
    Janssens PM; De Jong CC; Vink AA; Van Haastert PJ
    J Biol Chem; 1989 Mar; 264(8):4329-35. PubMed ID: 2564393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial characterization of guanylyl cyclase activity in calf thyroid.
    Bocanera LV; Martinetto H; FlawiĆ” MM; Pisarev MA
    Endocr Res; 1999 May; 25(2):215-28. PubMed ID: 10382683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human prepro atrial natriuretic factors 26-55, 56-92, and 104-123 increase renal guanylate cyclase activity.
    Vesely DL; Bayliss JM; Sallman AL
    Biochem Biophys Res Commun; 1987 Feb; 143(1):186-93. PubMed ID: 2881543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Down-regulation of soluble guanylyl cyclase in the inner medulla of DOCA-salt hypertensive rats.
    Taylor TA; Pollock JS; Pollock DM
    Vascul Pharmacol; 2003 Oct; 40(3):155-60. PubMed ID: 13678647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in the subcellular distribution of Guanylate cyclase and its responsiveness to nitric oxide in diethylstilbestrol-induced renal tumors.
    Braughler JM; Gilloteaux J; Steggles AW
    Cancer; 1982 Jul; 50(1):78-84. PubMed ID: 6123381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional localization of soluble guanylate cyclase in turtle retina: modulation of cGMP by nitric oxide donors.
    Blute TA; Velasco P; Eldred WD
    Vis Neurosci; 1998; 15(3):485-98. PubMed ID: 9685201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel mechanism of soluble guanylate cyclase stimulation: time-dependent activation by bacterial lipopolysaccharide in rat fetal spleen cells.
    Graber SE; Clancey MA; Wells JN; Gerzer R
    Biochim Biophys Acta; 1988 Dec; 972(3):331-8. PubMed ID: 2461743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein kinase C mediates the calcium-induced activation of rat colonic particulate guanylate cyclase.
    Khare S; Wilson DM; Tien XY; Wali RK; Bissonnette M; Brasitus TA
    Arch Biochem Biophys; 1994 Oct; 314(1):200-4. PubMed ID: 7944395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium and O2-dependent control of inner medullary cGMP: possible role for Ca2+-dependent arachiodonate release and prostaglandin synthesis in expression of the action of osmolality on renal inner medullary guanosine 3'5' monophosphate.
    Craven PA; DeRubertis FR
    Metabolism; 1980 Sep; 29(9):842-53. PubMed ID: 6251338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of atriopeptin on particulate guanylate cyclase from rat adrenal.
    Waldman SA; Rapoport RM; Fiscus RR; Murad F
    Biochim Biophys Acta; 1985 May; 845(2):298-303. PubMed ID: 2859896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.