BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 10967080)

  • 1. Cone differentiation with no photopigment coexpression.
    Szepessy Z; Lukáts A; Fekete T; Barsi A; Röhlich P; Szél A
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):3171-5. PubMed ID: 10967080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complementary cone fields of the rabbit retina.
    Juliusson B; Bergström A; Röhlich P; Ehinger B; van Veen T; Szél A
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):811-8. PubMed ID: 8125743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoreceptor layer of salmonid fishes: transformation and loss of single cones in juvenile fish.
    Cheng CL; Flamarique IN; Hárosi FI; Rickers-Haunerland J; Haunerland NH
    J Comp Neurol; 2006 Mar; 495(2):213-35. PubMed ID: 16435286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunocytochemical reactivity of Xenopus laevis retinal rods and cones with several monoclonal antibodies to visual pigments.
    Röhlich P; Szél A; Papermaster DS
    J Comp Neurol; 1989 Dec; 290(1):105-17. PubMed ID: 2592607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective development of one cone photoreceptor type in retinal organ culture.
    Söderpalm A; Szél A; Caffé AR; van Veen T
    Invest Ophthalmol Vis Sci; 1994 Oct; 35(11):3910-21. PubMed ID: 7928189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual pigment coexpression in all cones of two rodents, the Siberian hamster, and the pouched mouse.
    Lukáts A; Dkhissi-Benyahya O; Szepessy Z; Röhlich P; Vígh B; Bennett NC; Cooper HM; Szél A
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2468-73. PubMed ID: 12091452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green cone opsin and rhodopsin regulation by CNTF and staurosporine in cultured chick photoreceptors.
    Xie HQ; Adler R
    Invest Ophthalmol Vis Sci; 2000 Dec; 41(13):4317-23. PubMed ID: 11095633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the stability of the human cone visual pigments.
    Ramon E; Mao X; Ridge KD
    Photochem Photobiol; 2009; 85(2):509-16. PubMed ID: 19192203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgenic mice expressing a functional human photopigment.
    Shaaban SA; Crognale MA; Calderone JB; Huang J; Jacobs GH; Deeb SS
    Invest Ophthalmol Vis Sci; 1998 May; 39(6):1036-43. PubMed ID: 9579484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Difference in PNA label intensity between short- and middle-wavelength sensitive cones in the ground squirrel retina.
    Szél A; von Schantz M; Röhlich P; Farber DB; van Veen T
    Invest Ophthalmol Vis Sci; 1993 Dec; 34(13):3641-5. PubMed ID: 8258523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photopigment coexpression in mammals: comparative and developmental aspects.
    Lukáts A; Szabó A; Röhlich P; Vígh B; Szél A
    Histol Histopathol; 2005 Apr; 20(2):551-74. PubMed ID: 15736061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of the cone photoreceptor mosaic in the mouse retina revealed by fluorescent cones in transgenic mice.
    Fei Y
    Mol Vis; 2003 Feb; 9():31-42. PubMed ID: 12592228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle?
    Peichl L
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Nov; 287(1):1001-12. PubMed ID: 16200646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal differences between the expression of short- and middle-wave sensitive cone pigments in the mouse retina: a developmental study.
    Szél A; Röhlich P; Mieziewska K; Aguirre G; van Veen T
    J Comp Neurol; 1993 May; 331(4):564-77. PubMed ID: 8509512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of cone photoreceptors in the mammalian retina.
    Szél A; Röhlich P; Caffé AR; van Veen T
    Microsc Res Tech; 1996 Dec; 35(6):445-62. PubMed ID: 9016448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual pigment coexpression in Guinea pig cones: a microspectrophotometric study.
    Parry JW; Bowmaker JK
    Invest Ophthalmol Vis Sci; 2002 May; 43(5):1662-5. PubMed ID: 11980888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connexin 36 in photoreceptor cells: studies on transgenic rod-less and cone-less mouse retinas.
    Dang L; Pulukuri S; Mears AJ; Swaroop A; Reese BE; Sitaramayya A
    Mol Vis; 2004 May; 10():323-7. PubMed ID: 15152186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphologic identification of the OFF-type blue cone bipolar cell in the rabbit retina.
    Liu PC; Chiao CC
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3388-95. PubMed ID: 17591913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the blue-sensitive cones in the mammalian retina by anti-visual pigment antibody.
    Szél A; Diamantstein T; Röhlich P
    J Comp Neurol; 1988 Jul; 273(4):593-602. PubMed ID: 3209737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gradients of cone differentiation and FGF expression during development of the foveal depression in macaque retina.
    Cornish EE; Madigan MC; Natoli R; Hales A; Hendrickson AE; Provis JM
    Vis Neurosci; 2005; 22(4):447-59. PubMed ID: 16212702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.