These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 1096719)

  • 21. Microtubules rich in post-translationally modified alpha-tubulin form distinct arrays in frog lens epithelial cells.
    Prescott AR; Webb SF; Rawlins D; Shaw PJ; Warn RM
    Exp Eye Res; 1991 Jun; 52(6):743-53. PubMed ID: 1855548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cultured calf lens epithelium. II. The effect of dexamathasone.
    van Venrooij WJ; Groeneveld AA; Bloemendal H; Benedetti EL
    Exp Eye Res; 1974 Jun; 18(6):527-36. PubMed ID: 4851225
    [No Abstract]   [Full Text] [Related]  

  • 23. Electron microscopic detection of glycoconjugates in the chicken lens.
    Yao R; Crossland W; Maisel H
    Exp Eye Res; 1996 Dec; 63(6):705-11. PubMed ID: 9068377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein synthesis and ultrastructure during the formation of embryonic chick lens fibers in vivo and in vitro.
    Piatigorsky J; Webster HD; Craig SP
    Dev Biol; 1972 Feb; 27(2):176-89. PubMed ID: 4553430
    [No Abstract]   [Full Text] [Related]  

  • 25. Autocrine signals enable chondrocytes to survive in culture.
    Ishizaki Y; Burne JF; Raff MC
    J Cell Biol; 1994 Aug; 126(4):1069-77. PubMed ID: 8051206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The state of differentiation of embryonic chicken lens cells determines insulin-like growth factor I internalization.
    Soler AP; Alemany J; Smith RM; de Pablo F; Jarett L
    Endocrinology; 1990 Aug; 127(2):595-603. PubMed ID: 2164914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cycloheximide effect on DNA degradation and delta-crystallin synthesis in terminally differentiating lens cells.
    Counis MF; Chaudun E; Carreau JP; Courtois Y
    Biochim Biophys Acta; 1980 Mar; 607(1):43-52. PubMed ID: 6768390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfilament assembly during lens cell elongation in vitro.
    Ramaekers F; Jap P; Mungyer G; Bloemendal H
    Curr Eye Res; 1982-1983; 2(3):169-81. PubMed ID: 6891317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A central role for vimentin in regulating repair function during healing of the lens epithelium.
    Menko AS; Bleaken BM; Libowitz AA; Zhang L; Stepp MA; Walker JL
    Mol Biol Cell; 2014 Mar; 25(6):776-90. PubMed ID: 24478454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 51Cr release and oxidative stress in the lens.
    Stewart-DeHaan PJ; Sanwal M; Creighton MO; Inch WR; Trevithick JR
    Lens Eye Toxic Res; 1989; 6(1-2):183-202. PubMed ID: 2488017
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scanning electron microscopy of lens placode invagination in the chick embryo.
    Wakely J
    Exp Eye Res; 1976 Jun; 22(6):647-51. PubMed ID: 776643
    [No Abstract]   [Full Text] [Related]  

  • 32. The role of fibroblast growth factor and epidermal growth factorin the proliferative response of the corneal and lens epithelium.
    Gospodarowicz D; Mescher AL; Brown KD; Birdwell CR
    Exp Eye Res; 1977 Dec; 25(6):631-49. PubMed ID: 304011
    [No Abstract]   [Full Text] [Related]  

  • 33. Formation of capsule like material during long-term cultivation of bovine lens epithelial cells.
    Iwig M; Geyer G; Marquardt I; Glaesser D
    Acta Biol Med Ger; 1976; 35(3-4):413-9. PubMed ID: 61671
    [No Abstract]   [Full Text] [Related]  

  • 34. Decreased membrane permeability to potassium is responsible for the cell volume increase that drives lens fiber cell elongation.
    Parmelee JT; Beebe DC
    J Cell Physiol; 1988 Mar; 134(3):491-6. PubMed ID: 2450882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Volume regulation in lens epithelial cells and differentiating lens fiber cells.
    Beebe DC; Parmelee JT; Belcher KS
    J Cell Physiol; 1990 Jun; 143(3):455-9. PubMed ID: 2358469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The pattern of DNA synthesis in the lens epithelium and the annular pad during development and growth of the chick lens.
    Persons BJ; Modak SP
    Exp Eye Res; 1970 Jan; 9(1):144-51. PubMed ID: 5417906
    [No Abstract]   [Full Text] [Related]  

  • 37. Fine structure of bovine lens epithelial cells in vitro in relation to modifications induced by a retinal extract (EDGF).
    Perry MM; Tassin J; Courtois Y
    Exp Cell Res; 1981 Dec; 136(2):379-90. PubMed ID: 7198049
    [No Abstract]   [Full Text] [Related]  

  • 38. Induction of mitosis in the cultured rabbit lens initiated by the addition of insulin to medium KEI-4.
    Reddan JR; Unakar NJ; Harding CV; Bagchi M; SaldaƱa G
    Exp Eye Res; 1975 Jan; 20(1):45-61. PubMed ID: 172363
    [No Abstract]   [Full Text] [Related]  

  • 39. Fine structure of the lens epithelium.
    Porte A; Brine A; Stoeckel ME
    Ann Ophthalmol; 1975 May; 7(5):623-6. PubMed ID: 1094894
    [No Abstract]   [Full Text] [Related]  

  • 40. FGF signaling in chick lens development.
    Le AC; Musil LS
    Dev Biol; 2001 May; 233(2):394-411. PubMed ID: 11336503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.