These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 10967542)

  • 1. Ectodermal markers delineate the neural fold interface during avian neurulation.
    Lawson A; Colas JF; Schoenwolf GC
    Anat Rec; 2000 Sep; 260(1):106-9. PubMed ID: 10967542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a cellular and molecular understanding of neurulation.
    Colas JF; Schoenwolf GC
    Dev Dyn; 2001 Jun; 221(2):117-45. PubMed ID: 11376482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A requirement for NF-protocadherin and TAF1/Set in cell adhesion and neural tube formation.
    Rashid D; Newell K; Shama L; Bradley R
    Dev Biol; 2006 Mar; 291(1):170-81. PubMed ID: 16426602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of the dorsal surface of the neural tube by progressive delamination of epidermal ectoderm and neuroepithelium: implications for neurulation and neural tube defects.
    Martins-Green M
    Development; 1988 Aug; 103(4):687-706. PubMed ID: 3073935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complementary expression of AP-2 and AP-2rep in ectodermal derivatives of Xenopus embryos.
    Gotoh M; Izutsu Y; Maéno M
    Dev Genes Evol; 2003 Jul; 213(7):363-7. PubMed ID: 12756566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm.
    Pieper M; Ahrens K; Rink E; Peter A; Schlosser G
    Development; 2012 Mar; 139(6):1175-87. PubMed ID: 22318231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of the avian neural crest.
    Bronner-Fraser M
    Stem Cells; 1995 Nov; 13(6):640-6. PubMed ID: 8590865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of Xenopus snail in mesoderm and prospective neural fold ectoderm.
    Essex LJ; Mayor R; Sargent MG
    Dev Dyn; 1993 Oct; 198(2):108-22. PubMed ID: 8305705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular mechanisms of neural fold formation and morphogenesis in the chick embryo.
    Lawson A; Anderson H; Schoenwolf GC
    Anat Rec; 2001 Feb; 262(2):153-68. PubMed ID: 11169910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epithelial cell wedging and neural trough formation are induced planarly in Xenopus, without persistent vertical interactions with mesoderm.
    Poznanski A; Minsuk S; Stathopoulos D; Keller R
    Dev Biol; 1997 Sep; 189(2):256-69. PubMed ID: 9299118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular genetics of neurulation.
    Papalopulu N; Kintner CR
    Ciba Found Symp; 1994; 181():90-9; discussion 99-102. PubMed ID: 8005033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State of commitment of prospective neural plate and prospective mesoderm in late gastrula/early neurula stages of avian embryos.
    Garcia-Martinez V; Darnell DK; Lopez-Sanchez C; Sosic D; Olson EN; Schoenwolf GC
    Dev Biol; 1997 Jan; 181(1):102-15. PubMed ID: 9015268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of microfilaments in cranial neurulation in rat embryos: effects of short-term exposure to cytochalasin D.
    Morriss-Kay G; Tuckett F
    J Embryol Exp Morphol; 1985 Aug; 88():333-48. PubMed ID: 4078537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and patterning of the avian neuraxis: one dozen hypotheses.
    Schoenwolf GC
    Ciba Found Symp; 1994; 181():25-38; discussion 38-50. PubMed ID: 8005028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topographical changes along the neural fold associated with neurulation in the hamster and mouse.
    Waterman RE
    Am J Anat; 1976 Jun; 146(2):151-71. PubMed ID: 941847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grainyhead-like 2 downstream targets act to suppress epithelial-to-mesenchymal transition during neural tube closure.
    Ray HJ; Niswander LA
    Development; 2016 Apr; 143(7):1192-204. PubMed ID: 26903501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mouse Ovol2 gene is required for cranial neural tube development.
    Mackay DR; Hu M; Li B; Rhéaume C; Dai X
    Dev Biol; 2006 Mar; 291(1):38-52. PubMed ID: 16423343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate mapping the avian epiblast with focal injections of a fluorescent-histochemical marker: ectodermal derivatives.
    Schoenwolf GC; Sheard P
    J Exp Zool; 1990 Sep; 255(3):323-39. PubMed ID: 2203877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of cell protrusions by small GTPases during fusion of the neural folds.
    Rolo A; Savery D; Escuin S; de Castro SC; Armer HE; Munro PM; Molè MA; Greene ND; Copp AJ
    Elife; 2016 Apr; 5():e13273. PubMed ID: 27114066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of neural tube basal lamina during neurulation and neural crest cell emigration in the trunk of the mouse embryo.
    Martins-Green M; Erickson CA
    J Embryol Exp Morphol; 1986 Nov; 98():219-36. PubMed ID: 3655650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.