BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 10968224)

  • 1. Low frequency depression of H-reflexes in humans with acute and chronic spinal-cord injury.
    Schindler-Ivens S; Shields RK
    Exp Brain Res; 2000 Jul; 133(2):233-41. PubMed ID: 10968224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue modulates synchronous but not asynchronous soleus activation during stimulation of paralyzed muscle.
    Shields RK; Dudley-Javoroski S
    Clin Neurophysiol; 2013 Sep; 124(9):1853-60. PubMed ID: 23673062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depression and recovery of reflex amplitude during electrical stimulation after spinal cord injury.
    Clair-Auger JM; Lagerquist O; Collins DF
    Clin Neurophysiol; 2013 Apr; 124(4):723-31. PubMed ID: 23117117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repeated transspinal stimulation decreases soleus H-reflex excitability and restores spinal inhibition in human spinal cord injury.
    Knikou M; Murray LM
    PLoS One; 2019; 14(9):e0223135. PubMed ID: 31557238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limb segment vibration modulates spinal reflex excitability and muscle mRNA expression after spinal cord injury.
    Chang SH; Tseng SC; McHenry CL; Littmann AE; Suneja M; Shields RK
    Clin Neurophysiol; 2012 Mar; 123(3):558-68. PubMed ID: 21963319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigability, relaxation properties, and electromyographic responses of the human paralyzed soleus muscle.
    Shields RK
    J Neurophysiol; 1995 Jun; 73(6):2195-206. PubMed ID: 7666132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of linear regression and probit analysis for detecting H-reflex threshold in individuals with and without spinal cord injury.
    Schindler-Ivens SM; Shields RK
    Electromyogr Clin Neurophysiol; 2004; 44(3):153-9. PubMed ID: 15125055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Windup of flexion reflexes in chronic human spinal cord injury: a marker for neuronal plateau potentials?
    Hornby TG; Rymer WZ; Benz EN; Schmit BD
    J Neurophysiol; 2003 Jan; 89(1):416-26. PubMed ID: 12522190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-frequency H-reflex depression in trained human soleus after spinal cord injury.
    Shields RK; Dudley-Javoroski S; Oza PD
    Neurosci Lett; 2011 Jul; 499(2):88-92. PubMed ID: 21640787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery cycles of posterior root-muscle reflexes evoked by transcutaneous spinal cord stimulation and of the H reflex in individuals with intact and injured spinal cord.
    Hofstoetter US; Freundl B; Binder H; Minassian K
    PLoS One; 2019; 14(12):e0227057. PubMed ID: 31877192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased spinal reflex excitability is associated with enhanced central activation during voluntary lengthening contractions in human spinal cord injury.
    Kim HE; Corcos DM; Hornby TG
    J Neurophysiol; 2015 Jul; 114(1):427-39. PubMed ID: 25972590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locomotor training improves premotoneuronal control after chronic spinal cord injury.
    Knikou M; Mummidisetty CK
    J Neurophysiol; 2014 Jun; 111(11):2264-75. PubMed ID: 24598526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hip joint angle changes on intersegmental spinal coupling in human spinal cord injury.
    Knikou M
    Exp Brain Res; 2005 Dec; 167(3):381-93. PubMed ID: 16059682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locomotor training modifies soleus monosynaptic motoneuron responses in human spinal cord injury.
    Smith AC; Rymer WZ; Knikou M
    Exp Brain Res; 2015 Jan; 233(1):89-103. PubMed ID: 25205562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soleus H-reflex recruitment is not altered in persons with chronic spinal cord injury.
    Schindler-Ivens SM; Shields RK
    Arch Phys Med Rehabil; 2004 May; 85(5):840-7. PubMed ID: 15129411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From spinal shock to spasticity: neuronal adaptations to a spinal cord injury.
    Hiersemenzel LP; Curt A; Dietz V
    Neurology; 2000 Apr; 54(8):1574-82. PubMed ID: 10762496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limb compressive load does not inhibit post activation depression of soleus H-reflex in indiviudals with chronic spinal cord injury.
    Tseng SC; Shields RK
    Clin Neurophysiol; 2013 May; 124(5):982-90. PubMed ID: 23168355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H-reflexes are less depressed following muscle stretch in spastic spinal cord injured patients than in healthy subjects.
    Nielsen J; Petersen N; Ballegaard M; Biering-Sørensen F; Kiehn O
    Exp Brain Res; 1993; 97(1):173-6. PubMed ID: 8131827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The tonic stretch reflex and spastic hypertonia after spinal cord injury.
    Woolacott AJ; Burne JA
    Exp Brain Res; 2006 Sep; 174(2):386-96. PubMed ID: 16680428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-activation depression of soleus stretch reflexes in healthy and spastic humans.
    Grey MJ; Klinge K; Crone C; Lorentzen J; Biering-Sørensen F; Ravnborg M; Nielsen JB
    Exp Brain Res; 2008 Feb; 185(2):189-97. PubMed ID: 17932663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.