These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 1096891)

  • 1. Fumarate as alternate electron acceptor for the late steps of anaerobic heme synthesis in Escherichia coli.
    Jacobs NJ; Jacobs JM
    Biochem Biophys Res Commun; 1975 Jul; 65(1):435-41. PubMed ID: 1096891
    [No Abstract]   [Full Text] [Related]  

  • 2. Evidence for involvement of the electron transport system at a late step of anaerobic microbial heme synthesis.
    Jacobs NJ; Jacobs JM
    Biochim Biophys Acta; 1977 Jan; 459(1):141-4. PubMed ID: 318855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The late steps of anaerobic heme biosynthesis in E. coli: role for quinones in protoporphyrinogen oxidation.
    Jacobs JM; Jacobs NJ
    Biochem Biophys Res Commun; 1977 Sep; 78(1):429-33. PubMed ID: 334168
    [No Abstract]   [Full Text] [Related]  

  • 4. Nitrate, fumarate, and oxygen as electron acceptors for a late step in microbial heme synthesis.
    Jacobs NJ; Jacobs JM
    Biochim Biophys Acta; 1976 Oct; 449(1):1-9. PubMed ID: 788792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional anaerobic electron transport linked to the reduction of nitrate and fumarate in membranes from Escherichia coli as demonstrated by quenching of atebrin fluorescence.
    Haddock BA; Kendall-Tobias MW
    Biochem J; 1975 Dec; 152(3):655-9. PubMed ID: 776172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of oxygen in the late steps of heme synthesis in pseudomonads and Escherichia coli.
    Jacobs NJ; Jacobs JM; Mills BA
    Enzyme; 1973; 16(1):50-6. PubMed ID: 4208580
    [No Abstract]   [Full Text] [Related]  

  • 7. Proton translocation coupled to electron flow from endogenous substrates to fumarate in anaerobically grown Escherichia coli K12.
    Gutowski SJ; Rosenberg H
    Biochem J; 1977 Apr; 164(1):265-7. PubMed ID: 18144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Requirement for the proton-pumping NADH dehydrogenase I of Escherichia coli in respiration of NADH to fumarate and its bioenergetic implications.
    Tran QH; Bongaerts J; Vlad D; Unden G
    Eur J Biochem; 1997 Feb; 244(1):155-60. PubMed ID: 9063459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of dicyclohexylcarbodi-imide on proton translocation coupled to fumarate reduction in anaerobically grown cells of Escherichia coli K-12.
    Gutowski SJ; Rosenberg H
    Biochem J; 1976 Dec; 160(3):813-6. PubMed ID: 797390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quinones as hydrogen carriers for a late step in anaerobic heme biosynthesis in Escherichia coli.
    Jacobs NJ; Jacobs JM
    Biochim Biophys Acta; 1978 Dec; 544(3):540-6. PubMed ID: 365243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The anaerobic oxidation of dihydroorotate by Escherichia coli K-12.
    Andrews S; Cox GB; Gibson F
    Biochim Biophys Acta; 1977 Oct; 462(1):153-60. PubMed ID: 199252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutants of Escherichia coli K12 unable to use fumarate as an anaerobic electron acceptor.
    Lambden PR; Guest JR
    J Gen Microbiol; 1976 Dec; 97(2):145-60. PubMed ID: 796407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the late steps of microbial heme synthesis: conversion of coproporphyrinogen to protoporphyrin.
    Jacobs NJ; Jacobs JM; Brent P
    J Bacteriol; 1971 Jul; 107(1):203-9. PubMed ID: 4935319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic transport in Escherichia coli membrane vesicles.
    Konings WN; Kaback HR
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3376-81. PubMed ID: 4587250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic fumarate transport in Escherichia coli by an fnr-dependent dicarboxylate uptake system which is different from the aerobic dicarboxylate uptake system.
    Engel P; Krämer R; Unden G
    J Bacteriol; 1992 Sep; 174(17):5533-9. PubMed ID: 1512189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The electron transport chain of Escherichia coli grown anaerobically with fumarate as terminal electron acceptor: an electron paramagnetic resonance study.
    Ingledew WJ
    J Gen Microbiol; 1983 Jun; 129(6):1651-9. PubMed ID: 6313851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fumarate as terminal acceptor of phosphorylative electron transport.
    Kröger A
    Biochim Biophys Acta; 1978 Oct; 505(2):129-45. PubMed ID: 363147
    [No Abstract]   [Full Text] [Related]  

  • 18. Anaerobic growth of Escherichia coli K12 with fumarate as terminal electron acceptor. Genetic studies with menaquinone and fluoroacetate-resistant mutants.
    Guest JR
    J Gen Microbiol; 1979 Dec; 115(2):259-71. PubMed ID: 393800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme complex which couples glycerol-3-phosphate dehydrogenation to fumarate reduction in Escherichia coli.
    Miki K; Lin EC
    J Bacteriol; 1973 May; 114(2):767-71. PubMed ID: 4574699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Escherichia coli mutant containing only demethylmenaquinone, but no menaquinone: effects on fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate respiration.
    Wissenbach U; Ternes D; Unden G
    Arch Microbiol; 1992; 158(1):68-73. PubMed ID: 1444716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.