These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 10969008)

  • 21. Design of membrane-inserting peptides: spectroscopic characterization with and without lipid bilayers.
    Chung LA; Thompson TE
    Biochemistry; 1996 Sep; 35(35):11343-54. PubMed ID: 8784189
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The infrared dichroism of transmembrane helical polypeptides.
    Axelsen PH; Kaufman BK; McElhaney RN; Lewis RN
    Biophys J; 1995 Dec; 69(6):2770-81. PubMed ID: 8599683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrophobic effects on antibacterial and channel-forming properties of cecropin A-melittin hybrids.
    Juvvadi P; Vunnam S; Merrifield EL; Boman HG; Merrifield RB
    J Pept Sci; 1996; 2(4):223-32. PubMed ID: 9231329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides.
    Vagt T; Zschörnig O; Huster D; Koksch B
    Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Equilibrium and non-equilibrium conformations of peptides in lipid bilayers.
    Boden N; Cheng Y; Knowles PF
    Biophys Chem; 1997 Apr; 65(2-3):205-10. PubMed ID: 9175271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers.
    Oliver AE; Deamer DW
    Biophys J; 1994 May; 66(5):1364-79. PubMed ID: 7520289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of bilayer characteristics on the structural fate of aβ(1-40) and aβ(25-40).
    Xiong J; Roach CA; Oshokoya OO; Schroell RP; Yakubu RA; Eagleburger MK; Cooley JW; Jiji RD
    Biochemistry; 2014 May; 53(18):3004-11. PubMed ID: 24702518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The activation energy for insertion of transmembrane alpha-helices is dependent on membrane composition.
    Meijberg W; Booth PJ
    J Mol Biol; 2002 Jun; 319(3):839-53. PubMed ID: 12054874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.
    Arouri A; Dathe M; Blume A
    Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Secondary structure and location of a magainin analogue in synthetic phospholipid bilayers.
    Hirsh DJ; Hammer J; Maloy WL; Blazyk J; Schaefer J
    Biochemistry; 1996 Oct; 35(39):12733-41. PubMed ID: 8841117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics of the interaction of amphipathic alpha-helical peptides with phosphatidylcholines.
    McLean LR; Hagaman KA
    Biochim Biophys Acta; 1993 Apr; 1167(3):289-95. PubMed ID: 8481390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane fusion induced by a short fusogenic peptide is assessed by its insertion and orientation into target bilayers.
    Martin I; Pécheur EI; Ruysschaert JM; Hoekstra D
    Biochemistry; 1999 Jul; 38(29):9337-47. PubMed ID: 10413508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A molecular view on the interaction of the trojan peptide penetratin with the polar interface of lipid bilayers.
    Binder H; Lindblom G
    Biophys J; 2004 Jul; 87(1):332-43. PubMed ID: 15240468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reversible liposome association induced by LAH4: a peptide with potent antimicrobial and nucleic acid transfection activities.
    Marquette A; Lorber B; Bechinger B
    Biophys J; 2010 Jun; 98(11):2544-53. PubMed ID: 20513398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ study by polarization modulated Fourier transform infrared spectroscopy of the structure and orientation of lipids and amphipathic peptides at the air-water interface.
    Cornut I; Desbat B; Turlet JM; Dufourcq J
    Biophys J; 1996 Jan; 70(1):305-12. PubMed ID: 8770206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane binding, structure, and localization of cecropin-mellitin hybrid peptides: a site-directed spin-labeling study.
    Bhargava K; Feix JB
    Biophys J; 2004 Jan; 86(1 Pt 1):329-36. PubMed ID: 14695274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions.
    Vanhoye D; Bruston F; El Amri S; Ladram A; Amiche M; Nicolas P
    Biochemistry; 2004 Jul; 43(26):8391-409. PubMed ID: 15222751
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane association and selectivity of the antimicrobial peptide NK-2: a molecular dynamics simulation study.
    Pimthon J; Willumeit R; Lendlein A; Hofmann D
    J Pept Sci; 2009 Oct; 15(10):654-67. PubMed ID: 19691017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of the N-terminal glycine on the secondary structure, orientation, and interaction of the influenza hemagglutinin fusion peptide with lipid bilayers.
    Gray C; Tatulian SA; Wharton SA; Tamm LK
    Biophys J; 1996 May; 70(5):2275-86. PubMed ID: 9172751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the structure and membrane interaction of the antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs.
    Pan YL; Cheng JT; Hale J; Pan J; Hancock RE; Straus SK
    Biophys J; 2007 Apr; 92(8):2854-64. PubMed ID: 17259271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.