These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 10969015)

  • 1. On the truncation of long-range electrostatic interactions in DNA.
    Norberg J; Nilsson L
    Biophys J; 2000 Sep; 79(3):1537-53. PubMed ID: 10969015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of truncating long-range forces on protein dynamics.
    Loncharich RJ; Brooks BR
    Proteins; 1989; 6(1):32-45. PubMed ID: 2608658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides.
    Beck DA; Armen RS; Daggett V
    Biochemistry; 2005 Jan; 44(2):609-16. PubMed ID: 15641786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of a protein-protein dimer: particle-mesh Ewald electrostatic model yields far superior results to standard cutoff model.
    Norberto de Souza O; Ornstein RL
    J Biomol Struct Dyn; 1999 Jun; 16(6):1205-18. PubMed ID: 10447204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inherent speedup limitations in multiple time step/particle mesh Ewald algorithms.
    Barash D; Yang L; Qian X; Schlick T
    J Comput Chem; 2003 Jan; 24(1):77-88. PubMed ID: 12483677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA polymorphism: a comparison of force fields for nucleic acids.
    Reddy SY; Leclerc F; Karplus M
    Biophys J; 2003 Mar; 84(3):1421-49. PubMed ID: 12609851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water.
    Fukuda I; Kamiya N; Yonezawa Y; Nakamura H
    J Chem Phys; 2012 Aug; 137(5):054314. PubMed ID: 22894355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of human prion protein: importance of correct treatment of electrostatic interactions.
    Zuegg J; Gready JE
    Biochemistry; 1999 Oct; 38(42):13862-76. PubMed ID: 10529232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of periodic box size on aqueous molecular dynamics simulation of a DNA dodecamer with particle-mesh Ewald method.
    de Souza ON; Ornstein RL
    Biophys J; 1997 Jun; 72(6):2395-7. PubMed ID: 9168016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-range electrostatic interactions in molecular dynamics: an endothelin-1 case study.
    Fadrná E; Hladecková K; Koca J
    J Biomol Struct Dyn; 2005 Oct; 23(2):151-62. PubMed ID: 16060689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of explicit salt ions for protein stability in molecular dynamics simulation.
    Ibragimova GT; Wade RC
    Biophys J; 1998 Jun; 74(6):2906-11. PubMed ID: 9635744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restrained molecular dynamics of solvated duplex DNA using the particle mesh Ewald method.
    Konerding DE; Cheatham TE; Kollman PA; James TL
    J Biomol NMR; 1999 Feb; 13(2):119-31. PubMed ID: 10070753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the effect of electrostatic energy truncation in molecular dynamics simulations of immunoglobulin G light chain dimer.
    Król M
    J Mol Model; 2003 Oct; 9(5):316-24. PubMed ID: 12898291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An n log n Generalized Born Approximation.
    Anandakrishnan R; Daga M; Onufriev AV
    J Chem Theory Comput; 2011 Mar; 7(3):544-59. PubMed ID: 26596289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and hydration of BamHI DNA recognition site: a molecular dynamics investigation.
    Castrignanò T; Chillemi G; Desideri A
    Biophys J; 2000 Sep; 79(3):1263-72. PubMed ID: 10968990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation.
    Young MA; Ravishanker G; Beveridge DL
    Biophys J; 1997 Nov; 73(5):2313-36. PubMed ID: 9370428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some practical approaches to treating electrostatic polarization of proteins.
    Ji C; Mei Y
    Acc Chem Res; 2014 Sep; 47(9):2795-803. PubMed ID: 24883956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of molecular simulation methods to accurately represent protein-surface interactions: Method assessment for the calculation of electrostatic effects.
    Collier G; Vellore NA; Latour RA; Stuart SJ
    Biointerphases; 2009 Dec; 4(4):57-64. PubMed ID: 20408725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of biomolecules: long-range electrostatic effects.
    Sagui C; Darden TA
    Annu Rev Biophys Biomol Struct; 1999; 28():155-79. PubMed ID: 10410799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of solvated yeast tRNA(Asp).
    Auffinger P; Louise-May S; Westhof E
    Biophys J; 1999 Jan; 76(1 Pt 1):50-64. PubMed ID: 9876122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.