These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10969016)

  • 1. Competition-integration of blue and orange stimuli in Halobacterium salinarum cannot occur solely in SRI photoreceptor.
    Cercignani G; Frediani A; Lucia S; Petracchi D
    Biophys J; 2000 Sep; 79(3):1554-60. PubMed ID: 10969016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of photosensory adaptation in Halobacterium salinarium.
    Marwan W; Bibikov SI; Montrone M; Oesterhelt D
    J Mol Biol; 1995 Mar; 246(4):493-9. PubMed ID: 7877170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppressor mutation analysis of the sensory rhodopsin I-transducer complex: insights into the color-sensing mechanism.
    Jung KH; Spudich JL
    J Bacteriol; 1998 Apr; 180(8):2033-42. PubMed ID: 9555883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HtrI is a dimer whose interface is sensitive to receptor photoactivation and His-166 replacements in sensory rhodopsin I.
    Zhang XN; Spudich JL
    J Biol Chem; 1998 Jul; 273(31):19722-8. PubMed ID: 9677402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The proton pump bacteriorhodopsin is a photoreceptor for signal transduction in Halobacterium halobium.
    Bibikov SI; Grishanin RN; Marwan W; Oesterhelt D; Skulachev VP
    FEBS Lett; 1991 Dec; 295(1-3):223-6. PubMed ID: 1765158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The specificity of interaction of archaeal transducers with their cognate sensory rhodopsins is determined by their transmembrane helices.
    Zhang XN; Zhu J; Spudich JL
    Proc Natl Acad Sci U S A; 1999 Feb; 96(3):857-62. PubMed ID: 9927658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residue replacements of buried aspartyl and related residues in sensory rhodopsin I: D201N produces inverted phototaxis signals.
    Olson KD; Zhang XN; Spudich JL
    Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3185-9. PubMed ID: 7724537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton circulation during the photocycle of sensory rhodopsin II.
    Sasaki J; Spudich JL
    Biophys J; 1999 Oct; 77(4):2145-52. PubMed ID: 10512834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary reactions of sensory rhodopsins.
    Lutz I; Sieg A; Wegener AA; Engelhard M; Boche I; Otsuka M; Oesterhelt D; Wachtveitl J; Zinth W
    Proc Natl Acad Sci U S A; 2001 Jan; 98(3):962-7. PubMed ID: 11158578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoresponses of Halobacterium salinarum to repetitive pulse stimuli.
    Cercignani G; Lucia S; Petracchi D
    Biophys J; 1998 Sep; 75(3):1466-72. PubMed ID: 9726948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phototaxis of Halobacterium salinarium requires a signalling complex of sensory rhodopsin I and its methyl-accepting transducer HtrI.
    Krah M; Marwan W; Verméglio A; Oesterhelt D
    EMBO J; 1994 May; 13(9):2150-5. PubMed ID: 8187768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The methyl-accepting transducer protein HtrI is functionally associated with the photoreceptor sensory rhodopsin I in the archaeon Halobacterium salinarium.
    Ferrando-May E; Krah M; Marwan W; Oesterhelt D
    EMBO J; 1993 Aug; 12(8):2999-3005. PubMed ID: 8344242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteriorhodopsin is involved in halobacterial photoreception.
    Bibikov SI; Grishanin RN; Kaulen AD; Marwan W; Oesterhelt D; Skulachev VP
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9446-50. PubMed ID: 8415720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of methylation sites and effects of phototaxis stimuli on transducer methylation in Halobacterium salinarum.
    Perazzona B; Spudich JL
    J Bacteriol; 1999 Sep; 181(18):5676-83. PubMed ID: 10482508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The steady-state phase distribution of the motor switch complex model of Halobacterium salinarum.
    del Rosario RC; Diener F; Diener M; Oesterhelt D
    Math Biosci; 2009 Dec; 222(2):117-26. PubMed ID: 19857501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transducer-binding and transducer-mutations modulate photoactive-site-deprotonation in sensory rhodopsin I.
    Jung KH; Spudich EN; Dag P; Spudich JL
    Biochemistry; 1999 Oct; 38(40):13270-4. PubMed ID: 10529200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional expression of His-tagged sensory rhodopsin I in Escherichia coli.
    Schmies G; Chizhov I; Engelhard M
    FEBS Lett; 2000 Jan; 466(1):67-9. PubMed ID: 10648814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. His166 is critical for active-site proton transfer and phototaxis signaling by sensory rhodopsin I.
    Zhang XN; Spudich JL
    Biophys J; 1997 Sep; 73(3):1516-23. PubMed ID: 9284318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of sequential stimuli on Halobacterium salinarium photobehavior.
    Lucia S; Ferraro M; Cercignani G; Petracchi D
    Biophys J; 1996 Sep; 71(3):1554-62. PubMed ID: 8874029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Blue-Green Sensory Rhodopsin SRM from Haloarcula marismortui Attenuates Both Phototactic Responses Mediated by Sensory Rhodopsin I and II in Halobacterium salinarum.
    Chen JL; Lin YC; Fu HY; Yang CS
    Sci Rep; 2019 Apr; 9(1):5672. PubMed ID: 30952934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.