These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10969199)

  • 1. Comparison of across-subject EMG profiles using surface and multiple indwelling wire electrodes during gait.
    Bogey RA; Perry J; Bontrager EL; Gronley JK
    J Electromyogr Kinesiol; 2000 Aug; 10(4):255-9. PubMed ID: 10969199
    [No Abstract]   [Full Text] [Related]  

  • 2. Intramuscular fine-wire electromyography during cycling: repeatability, normalisation and a comparison to surface electromyography.
    Chapman AR; Vicenzino B; Blanch P; Knox JJ; Hodges PW
    J Electromyogr Kinesiol; 2010 Feb; 20(1):108-17. PubMed ID: 19339199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of the segment weight dynamic movement method to the normalization of gait EMG amplitude.
    Nishijima Y; Kato T; Yoshizawa M; Miyashita M; Iida H
    J Electromyogr Kinesiol; 2010 Jun; 20(3):550-7. PubMed ID: 19699658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of electrode location on EMG signal envelope in leg muscles during gait.
    Campanini I; Merlo A; Degola P; Merletti R; Vezzosi G; Farina D
    J Electromyogr Kinesiol; 2007 Aug; 17(4):515-26. PubMed ID: 16889982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of the dynamic properties of EMG patterns during gait.
    Ricamato AL; Hidler JM
    J Electromyogr Kinesiol; 2005 Aug; 15(4):384-92. PubMed ID: 15811609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EMG gait data from indwelling electrodes is attenuated over time and changes independent of any experimental effect.
    Reeves J; Starbuck C; Nester C
    J Electromyogr Kinesiol; 2020 Oct; 54():102461. PubMed ID: 32905962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rectus femoris: its role in normal gait.
    Annaswamy TM; Giddings CJ; Della Croce U; Kerrigan DC
    Arch Phys Med Rehabil; 1999 Aug; 80(8):930-4. PubMed ID: 10453770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tibialis posterior EMG activity during barefoot walking in people with neutral foot posture.
    Murley GS; Buldt AK; Trump PJ; Wickham JB
    J Electromyogr Kinesiol; 2009 Apr; 19(2):e69-77. PubMed ID: 18053742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repeatability of wire and surface electrodes in gait.
    Bogey R; Cerny K; Mohammed O
    Am J Phys Med Rehabil; 2003 May; 82(5):338-44. PubMed ID: 12704271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, development and testing of a low-cost sEMG system and its use in recording muscle activity in human gait.
    Supuk TG; Skelin AK; Cic M
    Sensors (Basel); 2014 May; 14(5):8235-58. PubMed ID: 24811078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gluteus minimus: an intramuscular EMG investigation of anterior and posterior segments during gait.
    Semciw AI; Green RA; Murley GS; Pizzari T
    Gait Posture; 2014 Feb; 39(2):822-6. PubMed ID: 24314814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the suitability of using surface electrode placements to estimate muscle activity of the rotator cuff as recorded by intramuscular electrodes.
    Waite DL; Brookham RL; Dickerson CR
    J Electromyogr Kinesiol; 2010 Oct; 20(5):903-11. PubMed ID: 19932033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methodology of electromyographic analysis of the trunk muscles during walking in healthy subjects: a literature review.
    Swinnen E; Baeyens JP; Meeusen R; Kerckhofs E
    J Electromyogr Kinesiol; 2012 Feb; 22(1):1-12. PubMed ID: 21622008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromyographic analysis of selected lower extremity musculature in normal subjects during ambulation with and without a Protonics knee brace.
    Diaz GY; Averett DH; Soderberg GL
    J Orthop Sports Phys Ther; 1997 Dec; 26(6):292-8. PubMed ID: 9402565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in gait and EMG when walking with the Masai Barefoot Technique.
    Romkes J; Rudmann C; Brunner R
    Clin Biomech (Bristol, Avon); 2006 Jan; 21(1):75-81. PubMed ID: 16169641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability of lower limb electromyography during overground walking: a comparison of maximal- and sub-maximal normalisation techniques.
    Murley GS; Menz HB; Landorf KB; Bird AR
    J Biomech; 2010 Mar; 43(4):749-56. PubMed ID: 19909958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computer algorithm for defining the group electromyographic profile from individual gait profiles.
    Bogey RA; Barnes LA; Perry J
    Arch Phys Med Rehabil; 1993 Mar; 74(3):286-91. PubMed ID: 8439257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of electrode type on neuromuscular activation patterns during walking in healthy subjects.
    Chimera NJ; Benoit DL; Manal K
    J Electromyogr Kinesiol; 2009 Dec; 19(6):e494-9. PubMed ID: 19231237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine-wire electromyography response to neuromuscular electrical stimulation in the triceps surae.
    Breen PP; Nene AV; Grace PA; Ă“Laighin G
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):244-9. PubMed ID: 25248190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.