These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 10970541)

  • 1. Generalized numerical renormalization group for dynamical quantities.
    Hofstetter W
    Phys Rev Lett; 2000 Aug; 85(7):1508-11. PubMed ID: 10970541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anderson impurity in a correlated conduction band.
    Hofstetter W; Bulla R; Vollhardt D
    Phys Rev Lett; 2000 May; 84(19):4417-20. PubMed ID: 10990700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical renormalization group study of probability distributions for local fluctuations in the Anderson-Holstein and Holstein-Hubbard models.
    Hewson AC; Bauer J
    J Phys Condens Matter; 2010 Mar; 22(11):115602. PubMed ID: 21389469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems.
    Li Z; Tong N; Zheng X; Hou D; Wei J; Hu J; Yan Y
    Phys Rev Lett; 2012 Dec; 109(26):266403. PubMed ID: 23368590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical renormalization group at marginal spectral density: application to tunneling in Luttinger liquids.
    Freyn A; Florens S
    Phys Rev Lett; 2011 Jul; 107(1):017201. PubMed ID: 21797566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical mean field theory with the density matrix renormalization group.
    García DJ; Hallberg K; Rozenberg MJ
    Phys Rev Lett; 2004 Dec; 93(24):246403. PubMed ID: 15697837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A local moment approach to the degenerate Anderson impurity model.
    Galpin MR; Gilbert AB; Logan DE
    J Phys Condens Matter; 2009 Sep; 21(37):375602. PubMed ID: 21832350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytic response theory for the density matrix renormalization group.
    Dorando JJ; Hachmann J; Chan GK
    J Chem Phys; 2009 May; 130(18):184111. PubMed ID: 19449912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variational numerical renormalization group: bridging the gap between NRG and density matrix renormalization group.
    Pižorn I; Verstraete F
    Phys Rev Lett; 2012 Feb; 108(6):067202. PubMed ID: 22401115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Projective quantum monte carlo method for the anderson impurity model and its application to dynamical mean field theory.
    Feldbacher M; Held K; Assaad FF
    Phys Rev Lett; 2004 Sep; 93(13):136405. PubMed ID: 15524746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical renormalization group for continuum one-dimensional systems.
    Konik RM; Adamov Y
    Phys Rev Lett; 2007 Apr; 98(14):147205. PubMed ID: 17501310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new renormalization group approach for systems with strong electron correlation.
    Edwards K; Hewson AC
    J Phys Condens Matter; 2011 Feb; 23(4):045601. PubMed ID: 21406889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical renormalization group for bosonic systems and application to the sub-ohmic spin-boson model.
    Bulla R; Tong NH; Vojta M
    Phys Rev Lett; 2003 Oct; 91(17):170601. PubMed ID: 14611329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier Monte Carlo renormalization-group approach to crystalline membranes.
    Tröster A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022132. PubMed ID: 25768483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical renormalization group calculation of near-gap peaks in spectral functions of the Anderson model with superconducting leads.
    Hecht T; Weichselbaum A; von Delft J; Bulla R
    J Phys Condens Matter; 2008 Jul; 20(27):275213. PubMed ID: 21694374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kondo effect in a magnetic field and the magnetoresistivity of kondo alloys.
    Costi TA
    Phys Rev Lett; 2000 Aug; 85(7):1504-7. PubMed ID: 10970540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density matrix renormalization group with efficient dynamical electron correlation through range separation.
    Hedegård ED; Knecht S; Kielberg JS; Jensen HJ; Reiher M
    J Chem Phys; 2015 Jun; 142(22):224108. PubMed ID: 26071702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergence behavior of the density-matrix renormalization group algorithm for optimized orbital orderings.
    Moritz G; Hess BA; Reiher M
    J Chem Phys; 2005 Jan; 122(2):024107. PubMed ID: 15638572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonequilibrium Steady-State Transport in Quantum Impurity Models: A Thermofield and Quantum Quench Approach Using Matrix Product States.
    Schwarz F; Weymann I; von Delft J; Weichselbaum A
    Phys Rev Lett; 2018 Sep; 121(13):137702. PubMed ID: 30312054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonequilibrium dynamical mean-field theory: an auxiliary quantum master equation approach.
    Arrigoni E; Knap M; von der Linden W
    Phys Rev Lett; 2013 Feb; 110(8):086403. PubMed ID: 23473180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.