BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 10970543)

  • 1. Dephasing times in quantum dots due to elastic LO phonon-carrier collisions.
    Uskov AV; Jauho A; Tromborg B; Mork J; Lang R
    Phys Rev Lett; 2000 Aug; 85(7):1516-9. PubMed ID: 10970543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligands Slow Down Pure-Dephasing in Semiconductor Quantum Dots.
    Liu J; Kilina SV; Tretiak S; Prezhdo OV
    ACS Nano; 2015 Sep; 9(9):9106-16. PubMed ID: 26284384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comment on "Dephasing times in quantum dots due to elastic LO phonon-carrier collisions".
    Muljarov EA; Zimmermann R
    Phys Rev Lett; 2006 Jan; 96(1):019703; discussion 019704. PubMed ID: 16486536
    [No Abstract]   [Full Text] [Related]  

  • 5. Phonon-induced dephasing of excitons in semiconductor quantum dots: multiple exciton generation, fission, and luminescence.
    Madrid AB; Hyeon-Deuk K; Habenicht BF; Prezhdo OV
    ACS Nano; 2009 Sep; 3(9):2487-94. PubMed ID: 19722505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dephasing in quantum dots: quadratic coupling to acoustic phonons.
    Muljarov EA; Zimmermann R
    Phys Rev Lett; 2004 Dec; 93(23):237401. PubMed ID: 15601200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton dynamics within the band-edge manifold states: the onset of an acoustic phonon bottleneck.
    Rainò G; Moreels I; Hassinen A; Stöferle T; Hens Z; Mahrt RF
    Nano Lett; 2012 Oct; 12(10):5224-9. PubMed ID: 23016932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exciton dephasing in quantum dots due to LO-phonon coupling: an exactly solvable model.
    Muljarov EA; Zimmermann R
    Phys Rev Lett; 2007 May; 98(18):187401. PubMed ID: 17501607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exciton-phonon scattering and nonradiative relaxation of excited carriers in hydrothermally synthesized CdTe quantum dots.
    Jagtap AM; Khatei J; Koteswara Rao KS
    Phys Chem Chem Phys; 2015 Nov; 17(41):27579-87. PubMed ID: 26426345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast vibrationally-induced dephasing of electronic excitations in PbSe quantum dots.
    Kamisaka H; Kilina SV; Yamashita K; Prezhdo OV
    Nano Lett; 2006 Oct; 6(10):2295-300. PubMed ID: 17034100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing Electron-Phonon Interaction through Two-Photon Interference in Resonantly Driven Semiconductor Quantum Dots.
    Reigue A; Iles-Smith J; Lux F; Monniello L; Bernard M; Margaillan F; Lemaitre A; Martinez A; McCutcheon DPS; Mørk J; Hostein R; Voliotis V
    Phys Rev Lett; 2017 Jun; 118(23):233602. PubMed ID: 28644642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breaking the phonon bottleneck in PbSe and CdSe quantum dots: time-domain density functional theory of charge carrier relaxation.
    Kilina SV; Kilin DS; Prezhdo OV
    ACS Nano; 2009 Jan; 3(1):93-9. PubMed ID: 19206254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exciton Dephasing by Phonon-Induced Scattering between Bright Exciton States in InP/ZnSe Colloidal Quantum Dots.
    Chandrasekaran V; Scarpelli L; Masia F; Borri P; Langbein W; Hens Z
    ACS Nano; 2023 Jul; 17(13):12118-12126. PubMed ID: 37326256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Phonons on Dephasing of Individual Excitons in Deterministic Quantum Dot Microlenses.
    Jakubczyk T; Delmonte V; Fischbach S; Wigger D; Reiter DE; Mermillod Q; Schnauber P; Kaganskiy A; Schulze JH; Strittmatter A; Rodt S; Langbein W; Kuhn T; Reitzenstein S; Kasprzak J
    ACS Photonics; 2016 Dec; 3(12):2461-2466. PubMed ID: 28713845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Zeno effect rationalizes the phonon bottleneck in semiconductor quantum dots.
    Kilina SV; Neukirch AJ; Habenicht BF; Kilin DS; Prezhdo OV
    Phys Rev Lett; 2013 May; 110(18):180404. PubMed ID: 23683182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling exciton-phonon interactions in optically driven quantum dots.
    Nazir A; McCutcheon DP
    J Phys Condens Matter; 2016 Mar; 28(10):103002. PubMed ID: 26882465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoexcited electron and hole dynamics in semiconductor quantum dots: phonon-induced relaxation, dephasing, multiple exciton generation and recombination.
    Hyeon-Deuk K; Prezhdo OV
    J Phys Condens Matter; 2012 Sep; 24(36):363201. PubMed ID: 22906924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of electron relaxation and dephasing rates in quantum dots caused by external magnetic fields.
    Stavrou VN
    J Phys Condens Matter; 2007 May; 19(18):186224. PubMed ID: 21691005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance.
    Rukhlenko ID; Fedorov AV; Baymuratov AS; Premaratne M
    Opt Express; 2011 Aug; 19(16):15459-82. PubMed ID: 21934910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of Electronic Structures and Phonon Dynamics in Quantum Dot Superlattices by Manipulation of Interior Nanospace.
    Chang IY; Kim D; Hyeon-Deuk K
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18321-7. PubMed ID: 27385641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.