These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 10971244)
1. Sensorless controlling method for a continuous flow left ventricular assist device. Oshikawa M; Araki K; Endo G; Anai H; Sato M Artif Organs; 2000 Aug; 24(8):600-5. PubMed ID: 10971244 [TBL] [Abstract][Full Text] [Related]
2. Detection of total assist and sucking points based on the pulsatility of a continuous flow artificial heart: in vivo evaluation. Oshikawa M; Araki K; Nakamura K; Anai H; Onitsuka T ASAIO J; 1998; 44(5):M704-7. PubMed ID: 9804526 [TBL] [Abstract][Full Text] [Related]
3. Effects of left ventricular assist device on cardiac function: experimental study of relationship between pump flow and left ventricular diastolic function. Saito A; Shiono M; Orime Y; Yagi S; Nakata KI; Eda K; Hattori T; Funahashi M; Taniguchi Y; Negishi N; Sezai Y Artif Organs; 2001 Sep; 25(9):728-32. PubMed ID: 11722351 [TBL] [Abstract][Full Text] [Related]
4. Motor current waveforms as an index for evaluation of native cardiac function during left ventricular support with a centrifugal blood pump. Kikugawa D Artif Organs; 2001 Sep; 25(9):703-8. PubMed ID: 11722346 [TBL] [Abstract][Full Text] [Related]
5. The index of motor current amplitude has feasibility in control for continuous flow pumps and evaluation of left ventricular function. Endo G; Araki K; Kojima K; Nakamura K; Matsuzaki Y; Onitsuka T Artif Organs; 2001 Sep; 25(9):697-702. PubMed ID: 11722345 [TBL] [Abstract][Full Text] [Related]
7. A safe automatic driving method for a continuous flow ventricular assist device based on motor current pulsatility: in vitro evaluation. Endo G; Araki K; Oshikawa M; Kojima K; Nakamura K; Matsuzaki Y; Onitsuka T ASAIO J; 2002; 48(1):83-9. PubMed ID: 11814103 [TBL] [Abstract][Full Text] [Related]
8. Hemodynamic controller for left ventricular assist device based on pulsatility ratio. Choi S; Boston JR; Antaki JF Artif Organs; 2007 Feb; 31(2):114-25. PubMed ID: 17298400 [TBL] [Abstract][Full Text] [Related]
9. A pulsatile control algorithm of continuous-flow pump for heart recovery. Gao B; Chang Y; Gu K; Zeng Y; Liu Y ASAIO J; 2012; 58(4):343-52. PubMed ID: 22576238 [TBL] [Abstract][Full Text] [Related]
10. [Hemodynamic changes in the decompensated heart during left ventricular assist using a diaphragmatic pneumatic pump]. Pi KD; Lan XC; Jin YA Zhonghua Xin Xue Guan Bing Za Zhi; 1989 Dec; 17(6):367-8, 383. PubMed ID: 2637137 [TBL] [Abstract][Full Text] [Related]
11. The influence of pump rotation speed on hemodynamics and myocardial oxygen metabolism in left ventricular assist device support with aortic valve regurgitation. Iizuka K; Nishinaka T; Takewa Y; Yamazaki K; Tatsumi E J Artif Organs; 2017 Sep; 20(3):194-199. PubMed ID: 28429120 [TBL] [Abstract][Full Text] [Related]
12. Detection of total assist and sucking points based on pulsatility of a continuous flow artificial heart: in vitro evaluation. Araki K; Oshikawa M; Onitsuka T; Nakamura K; Anai H; Yoshihara H ASAIO J; 1998; 44(5):M708-11. PubMed ID: 9804527 [TBL] [Abstract][Full Text] [Related]
13. The meaning of the turning point of the index of motor current amplitude curve in controlling a continuous flow pump or evaluation of left ventricular function. Endo GJ; Kojima K; Nakamura K; Matsuzaki Y; Onitsuka T Artif Organs; 2003 Mar; 27(3):272-6. PubMed ID: 12708453 [TBL] [Abstract][Full Text] [Related]
14. Improved left ventricular unloading and circulatory support with synchronized pulsatile left ventricular assistance compared with continuous-flow left ventricular assistance in an acute porcine left ventricular failure model. Letsou GV; Pate TD; Gohean JR; Kurusz M; Longoria RG; Kaiser L; Smalling RW J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1181-8. PubMed ID: 20546799 [TBL] [Abstract][Full Text] [Related]
15. Improving arterial pulsatility by feedback control of a continuous flow left ventricular assist device via in silico modeling. Bozkurt S; van de Vosse FN; Rutten MC Int J Artif Organs; 2014 Oct; 37(10):773-85. PubMed ID: 24970558 [TBL] [Abstract][Full Text] [Related]
16. Electrocardiogram-synchronized rotational speed change mode in rotary pumps could improve pulsatility. Ando M; Nishimura T; Takewa Y; Yamazaki K; Kyo S; Ono M; Tsukiya T; Mizuno T; Taenaka Y; Tatsumi E Artif Organs; 2011 Oct; 35(10):941-7. PubMed ID: 21615427 [TBL] [Abstract][Full Text] [Related]
17. Pitfalls in the development of a rotary blood pump controller. Konishi H; Misawa Y; Fuse K; Sohara Y ASAIO J; 2001; 47(4):397-400. PubMed ID: 11482493 [TBL] [Abstract][Full Text] [Related]
18. Effects of left ventricular support on right ventricular mechanics during experimental right ventricular ischemia. Moon MR; Castro LJ; DeAnda A; Daughters GT; Ingels NB; Miller DC Circulation; 1994 Nov; 90(5 Pt 2):II92-101. PubMed ID: 7955292 [TBL] [Abstract][Full Text] [Related]
19. Mechanical ventilation and thoracic artificial lung assistance during mechanical circulatory support with PUCA pump: in silico study. De Lazzari C; Genuini I; Quatember B; Fedele F Comput Methods Programs Biomed; 2014 Feb; 113(2):642-54. PubMed ID: 24332823 [TBL] [Abstract][Full Text] [Related]
20. What Is the Optimal Setting for a Continuous-Flow Left Ventricular Assist Device in Severe Mitral Regurgitation? Naito N; Nishimura T; Takewa Y; Kishimoto S; Date K; Umeki A; Ando M; Ono M; Tatsumi E Artif Organs; 2016 Nov; 40(11):1039-1045. PubMed ID: 27199010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]