These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 10971244)
21. Acute hemodynamic study of Tai-Ta left ventricular assist device in a canine model. Shyu JJ; Chou NK; Lee CJ; Chen CF; Shau YW; Wang SS; Chu SH Artif Organs; 2004 Dec; 28(12):1095-101. PubMed ID: 15554938 [TBL] [Abstract][Full Text] [Related]
22. Shifting the pulsatility by increasing the change in rotational speed for a rotary LVAD using a native heart load control system. Date K; Nishimura T; Takewa Y; Kishimoto S; Arakawa M; Umeki A; Ando M; Mizuno T; Tsukiya T; Ono M; Tatsumi E J Artif Organs; 2016 Dec; 19(4):315-321. PubMed ID: 27179968 [TBL] [Abstract][Full Text] [Related]
24. Estimation of left ventricular recovery level based on the motor current waveform analysis on circulatory support with centrifugal blood pump. Takahashi K; Uemura M; Watanabe N; Ohuchi K; Nakamura M; Fukui Y; Sakamoto T; Takatani S Artif Organs; 2001 Sep; 25(9):713-8. PubMed ID: 11722348 [TBL] [Abstract][Full Text] [Related]
25. Load-independent analysis of a pulsatile right ventricular assist device. Meyers CH; Peterseim DS; Uppal R; Jayawant AM; Campbell KA; Sabiston DC; Smith PK; Van Trigt P J Heart Lung Transplant; 1995; 14(1 Pt 1):177-85. PubMed ID: 7727467 [TBL] [Abstract][Full Text] [Related]
27. Durability of left ventricular assist devices: Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) 2006 to 2011. Holman WL; Naftel DC; Eckert CE; Kormos RL; Goldstein DJ; Kirklin JK J Thorac Cardiovasc Surg; 2013 Aug; 146(2):437-41.e1. PubMed ID: 23490245 [TBL] [Abstract][Full Text] [Related]
28. Arterial pulsatility under phasic left ventricular assist device support. Bozkurt S; van Tuijl S; van de Vosse FN; Rutten MC Biomed Mater Eng; 2016 Nov; 27(5):451-460. PubMed ID: 27885993 [TBL] [Abstract][Full Text] [Related]
29. Pulsatile support using a rotary left ventricular assist device with an electrocardiography-synchronized rotational speed control mode for tracking heart rate variability. Arakawa M; Nishimura T; Takewa Y; Umeki A; Ando M; Kishimoto Y; Kishimoto S; Fujii Y; Date K; Kyo S; Adachi H; Tatsumi E J Artif Organs; 2016 Jun; 19(2):204-7. PubMed ID: 26608806 [TBL] [Abstract][Full Text] [Related]
30. Hemodynamics of a pulsatile left ventricular assist device driven by a counterpulsation pump in a mock circulation. Khir AW; Swalen MJ; Segers P; Verdonck P; Pepper JR Artif Organs; 2006 Apr; 30(4):308-12. PubMed ID: 16643389 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of the pulsatility of a new pulsatile left ventricular assist device--the integrated cardioassist catheter--in dogs. Ide H; Yamaguchi A; Ino T; Adachi H; Mizuhara A; Kawahito K; Matsumoto H; Fujimasa I J Thorac Cardiovasc Surg; 1994 Feb; 107(2):569-75. PubMed ID: 8302076 [TBL] [Abstract][Full Text] [Related]
32. Control strategy for biventricular assistance with mixed-flow pumps. Endo G; Araki K; Oshikawa M; Kojima K; Saitoh T; Nakamura K; Onitsuka T Artif Organs; 2000 Aug; 24(8):594-9. PubMed ID: 10971243 [TBL] [Abstract][Full Text] [Related]
33. Effect of Continuous-Flow Mechanical Circulatory Support on Microvasculature Remodeling in the Failing Heart. Saito T; Miyagawa S; Toda K; Yoshikawa Y; Fukushima S; Saito S; Yoshioka D; Sakata Y; Daimon T; Sawa Y Artif Organs; 2019 Apr; 43(4):350-362. PubMed ID: 30129970 [TBL] [Abstract][Full Text] [Related]
34. Left ventricular reverse remodeling with a continuous flow left ventricular assist device measured by left ventricular end-diastolic dimensions and severity of mitral regurgitation. Morgan JA; Brewer RJ; Nemeh HW; Murthy R; Williams CT; Lanfear DE; Tita C; Paone G ASAIO J; 2012; 58(6):574-7. PubMed ID: 23103696 [TBL] [Abstract][Full Text] [Related]
35. Arterial pulsatility improvement in a feedback-controlled continuous flow left ventricular assist device: an ex-vivo experimental study. Bozkurt S; van Tuijl S; Schampaert S; van de Vosse FN; Rutten MC Med Eng Phys; 2014 Oct; 36(10):1288-95. PubMed ID: 25066581 [TBL] [Abstract][Full Text] [Related]
36. Design and control of the atrio-aortic left ventricular assist device based on O2 consumption. Drzewiecki GM; Pilla JJ; Welkowitz W IEEE Trans Biomed Eng; 1990 Feb; 37(2):128-37. PubMed ID: 2312137 [TBL] [Abstract][Full Text] [Related]
37. Increasing the transmitted flow pulse in a rotary left ventricular assist device. Gaddum NR; Fraser JF; Timms DL Artif Organs; 2012 Oct; 36(10):859-67. PubMed ID: 22845793 [TBL] [Abstract][Full Text] [Related]
38. Cellular and hemodynamics responses of failing myocardium to continuous flow mechanical circulatory support using the DeBakey-Noon left ventricular assist device: a comparative analysis with pulsatile-type devices. Thohan V; Stetson SJ; Nagueh SF; Rivas-Gotz C; Koerner MM; Lafuente JA; Loebe M; Noon GP; Torre-Amione G J Heart Lung Transplant; 2005 May; 24(5):566-75. PubMed ID: 15896754 [TBL] [Abstract][Full Text] [Related]
39. Changing pulsatility by delaying the rotational speed phasing of a rotary left ventricular assist device. Date K; Nishimura T; Arakawa M; Takewa Y; Kishimoto S; Umeki A; Ando M; Mizuno T; Tsukiya T; Ono M; Tatsumi E J Artif Organs; 2017 Mar; 20(1):18-25. PubMed ID: 27436097 [TBL] [Abstract][Full Text] [Related]
40. Derivation of indices of left ventricular contractility in the setting of continuous-flow left ventricular assist device support. Gupta S; Muthiah K; Woldendorp K; Robson D; Jansz P; Hayward CS Artif Organs; 2014 Dec; 38(12):1029-34. PubMed ID: 24660889 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]