These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10971594)

  • 1. Catalytic reductive dehalogenation of hexachloroethane by molecular variants of cytochrome P450cam (CYP101).
    Walsh ME; Kyritsis P; Eady NA; Hill HA; Wong LL
    Eur J Biochem; 2000 Sep; 267(18):5815-20. PubMed ID: 10971594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of polychlorinated benzenes by genetically engineered CYP101 (cytochrome P450(cam)).
    Jones JP; O'Hare EJ; Wong LL
    Eur J Biochem; 2001 Mar; 268(5):1460-7. PubMed ID: 11231299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam.
    Bell SG; Chen X; Sowden RJ; Xu F; Williams JN; Wong LL; Rao Z
    J Am Chem Soc; 2003 Jan; 125(3):705-14. PubMed ID: 12526670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marked enhancement in the reductive dehalogenation of hexachloroethane by a Thr319Ala mutation of cytochrome P450 1A2.
    Yanagita K; Sagami I; Daff S; Shimizu T
    Biochem Biophys Res Commun; 1998 Aug; 249(3):678-82. PubMed ID: 9731196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme-catalyzed dehalogenation of pentachloroethane: why F87W-cytochrome P450cam is faster than wild type.
    Manchester JI; Ornstein RL
    Protein Eng; 1995 Aug; 8(8):801-7. PubMed ID: 8637849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distal site and surface mutations of cytochrome P450 1A2 markedly enhance dehalogenation of chlorinated hydrocarbons.
    Yanagita K; Sagami I; Shimizu T
    Arch Biochem Biophys; 1997 Oct; 346(2):269-76. PubMed ID: 9343374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations of glutamate-84 at the putative potassium-binding site affect camphor binding and oxidation by cytochrome p450cam.
    Westlake AC; Harford-Cross CF; Donovan J; Wong LL
    Eur J Biochem; 1999 Nov; 265(3):929-35. PubMed ID: 10518786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the F87W/Y96F/V247L mutant of cytochrome P-450cam with 1,3,5-trichlorobenzene bound and further protein engineering for the oxidation of pentachlorobenzene and hexachlorobenzene.
    Chen X; Christopher A; Jones JP; Bell SG; Guo Q; Xu F; Rao Z; Wong LL
    J Biol Chem; 2002 Oct; 277(40):37519-26. PubMed ID: 12114516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering substrate recognition in catalysis by cytochrome P450cam.
    Bell SG; Chen X; Xu F; Rao Z; Wong LL
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):558-62. PubMed ID: 12773156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cosubstrate effects in reductive dehalogenation by Pseudomonas putida G786 expressing cytochrome P-450CAM.
    Logan MS; Newman LM; Schanke CA; Wackett LP
    Biodegradation; 1993; 4(1):39-50. PubMed ID: 7763853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The catalytic activity of cytochrome P450cam towards styrene oxidation is increased by site-specific mutagenesis.
    Nickerson DP; Harford-Cross CF; Fulcher SR; Wong LL
    FEBS Lett; 1997 Mar; 405(2):153-6. PubMed ID: 9089281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-activity correlations in pentachlorobenzene oxidation by engineered cytochrome P450cam.
    Xu F; Bell SG; Rao Z; Wong LL
    Protein Eng Des Sel; 2007 Oct; 20(10):473-80. PubMed ID: 17962225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of a high-barrier conformational change in the active site of cytochrome P450cam upon binding of putidaredoxin.
    Wei JY; Pochapsky TC; Pochapsky SS
    J Am Chem Soc; 2005 May; 127(19):6974-6. PubMed ID: 15884940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Butane and propane oxidation by engineered cytochrome P450cam.
    Bell SG; Stevenson JA; Boyd HD; Campbell S; Riddle AD; Orton EL; Wong LL
    Chem Commun (Camb); 2002 Mar; (5):490-1. PubMed ID: 12120555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein engineering of cytochrome p450(cam) (CYP101) for the oxidation of polycyclic aromatic hydrocarbons.
    Harford-Cross CF; Carmichael AB; Allan FK; England PA; Rouch DA; Wong LL
    Protein Eng; 2000 Feb; 13(2):121-8. PubMed ID: 10708651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the substrate specificity by engineering the active site of cytochrome P450cam: a rational approach.
    Manna SK; Mazumdar S
    Dalton Trans; 2010 Mar; 39(12):3115-23. PubMed ID: 20221546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural evidence for a functionally relevant second camphor binding site in P450cam: model for substrate entry into a P450 active site.
    Yao H; McCullough CR; Costache AD; Pullela PK; Sem DS
    Proteins; 2007 Oct; 69(1):125-38. PubMed ID: 17598143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active-site mobility inhibits reductive dehalogenation of 1,1,1-trichloroethane by cytochrome P450cam.
    Paulsen MD; Ornstein RL
    J Comput Aided Mol Des; 1994 Aug; 8(4):389-404. PubMed ID: 7815091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductive dehalogenation by cytochrome P450CAM: substrate binding and catalysis.
    Li S; Wackett LP
    Biochemistry; 1993 Sep; 32(36):9355-61. PubMed ID: 8369306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the CYP101 system for in vivo oxidation of unnatural substrates.
    Bell SG; Harford-Cross CF; Wong LL
    Protein Eng; 2001 Oct; 14(10):797-802. PubMed ID: 11739899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.