These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 10971798)

  • 1. Two new microscopical variants of thermomechanical modulation: scanning thermal expansion microscopy and dynamic localized thermomechanical analysis.
    Hammiche A; Price DM; Dupas E; Mills G; Kulik A; Reading M; Weaver JM; Pollock HM
    J Microsc; 2000 Sep; 199 (Pt 3)():180-90. PubMed ID: 10971798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the Temperature Dependence of the Thermal Expansion Coefficient of Polymers.
    Shardakov IN; Trufanov AN
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34577938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two- and three-dimensional imaging of multicomponent systems using scanning thermal microscopy and localized thermomechanical analysis.
    Harding L; Wood J; Reading M; Craig DQ
    Anal Chem; 2007 Jan; 79(1):129-39. PubMed ID: 17194130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy.
    Nikiforov MP; Jesse S; Morozovska AN; Eliseev EA; Germinario LT; Kalinin SV
    Nanotechnology; 2009 Sep; 20(39):395709. PubMed ID: 19726838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A piezo-thermal probe for thermomechanical analysis.
    Gaitas A; Gianchandani S; Zhu W
    Rev Sci Instrum; 2011 May; 82(5):053701. PubMed ID: 21639501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development of thermal nanoprobe methods as a means of characterizing and mapping plasticizer incorporation into ethylcellulose films.
    Meng J; Levina M; Rajabi-Siahboomi AR; Round AN; Reading M; Craig DQ
    Pharm Res; 2012 Aug; 29(8):2128-38. PubMed ID: 22528979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermomechanical Behavior of Poly(3-hexylthiophene) Thin Films on the Water Surface.
    Ma BS; Lee JW; Park H; Kim BJ; Kim TS
    ACS Omega; 2022 Jun; 7(23):19706-19713. PubMed ID: 35721964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal expansion coefficient and thermomechanical properties of SiN(x) thin films prepared by plasma-enhanced chemical vapor deposition.
    Tien CL; Lin TW
    Appl Opt; 2012 Oct; 51(30):7229-35. PubMed ID: 23089776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant-induced thermomechanical and morphological changes in TiO2-polystyrene nanocomposites.
    Patra N; Salerno M; Cozzoli PD; Athanassiou A
    J Colloid Interface Sci; 2013 Sep; 405():103-8. PubMed ID: 23769305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermomechanical Characterization and Modeling of Cold-Drawing of Poly(ethylene Terephthalate).
    Oberer J; Schneider K; Majschak JP
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31766162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Density μLED-Based Optical Cochlear Implant With Improved Thermomechanical Behavior.
    Klein E; Gossler C; Paul O; Ruther P
    Front Neurosci; 2018; 12():659. PubMed ID: 30327585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative scanning thermal microscopy based on determination of thermal probe dynamic resistance.
    Bodzenta J; Juszczyk J; Chirtoc M
    Rev Sci Instrum; 2013 Sep; 84(9):093702. PubMed ID: 24089831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the thermal properties of microcrystalline cellulose by modulated temperature differential scanning calorimetry.
    Picker KM; Hoag SW
    J Pharm Sci; 2002 Feb; 91(2):342-9. PubMed ID: 11835194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermomechanical analysis of frozen aqueous systems.
    Maurice TJ; Asher YJ; Thomson S
    Adv Exp Med Biol; 1991; 302():215-23. PubMed ID: 1746330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope.
    Wheeler JM; Michler J
    Rev Sci Instrum; 2013 Apr; 84(4):045103. PubMed ID: 23635228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Analysis of Polyurethane Drive Belts with Different Cross-Section Using Thermomechanical Tests for Modeling the Hot Plate Welding Process.
    Wałęsa K; Wrzesińska A; Dobrosielska M; Talaśka K; Wilczyński D
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal and thermomechanical properties of poly(butylene succinate) nanocomposites.
    Makhatha ME; Ray SS; Hato J; Luyt AS
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1679-89. PubMed ID: 18572565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of luting cement and thermomechanical loading on retention of glass fibre posts in root canals.
    Li XJ; Zhao SJ; Niu LN; Tay FR; Jiao K; Gao Y; Chen JH
    J Dent; 2014 Jan; 42(1):75-83. PubMed ID: 24200871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic thermomechanical response of bimaterial microcantilevers to periodic heating by infrared radiation.
    Kwon B; Rosenberger M; Bhargava R; Cahill DG; King WP
    Rev Sci Instrum; 2012 Jan; 83(1):015003. PubMed ID: 22299979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive Microstring Resonators for Solid State Thermomechanical Analysis of Small and Large Molecules.
    Karl M; Larsen PE; Rangacharya VP; Hwu ET; Rantanen J; Boisen A; Rades T
    J Am Chem Soc; 2018 Dec; 140(50):17522-17531. PubMed ID: 30468581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.