These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 10972158)
1. In vitro release behavior of dextran-methacrylate hydrogels using doxorubicin and other model compounds. Kim SH; Chu CC J Biomater Appl; 2000 Jul; 15(1):23-46. PubMed ID: 10972158 [TBL] [Abstract][Full Text] [Related]
2. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels. Kimura M; Takai M; Ishihara K J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of cross-linked carboxyl poly(glycerol methacrylate) and its application for the controlled release of doxorubicin. Gu W; Ma Y; Zhu C; Chen B; Ma J; Gao H Eur J Pharm Sci; 2012 Oct; 47(3):556-63. PubMed ID: 22884627 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and characterization of dextran-methacrylate hydrogels and structural study by SEM. Kim SH; Chu CC J Biomed Mater Res; 2000 Mar; 49(4):517-27. PubMed ID: 10602085 [TBL] [Abstract][Full Text] [Related]
5. Coordinate bonding strategy for molecularly imprinted hydrogels: toward pH-responsive doxorubicin delivery. Zhang Q; Zhang L; Wang P; Du S J Pharm Sci; 2014 Feb; 103(2):643-51. PubMed ID: 24395706 [TBL] [Abstract][Full Text] [Related]
7. Partially biodegradable temperature- and pH-responsive poly(N-isopropylacrylamide)/dextran-maleic acid hydrogels: formulation and controlled drug delivery of doxorubicin. Namkung S; Chu CC J Biomater Sci Polym Ed; 2007; 18(7):901-24. PubMed ID: 17688747 [TBL] [Abstract][Full Text] [Related]
8. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921 [TBL] [Abstract][Full Text] [Related]
9. An injectable and biodegradable hydrogel based on poly(α,β-aspartic acid) derivatives for localized drug delivery. Lu C; Wang X; Wu G; Wang J; Wang Y; Gao H; Ma J J Biomed Mater Res A; 2014 Mar; 102(3):628-38. PubMed ID: 23554110 [TBL] [Abstract][Full Text] [Related]
10. Influence of degree of substitution of HES-HEMA on the release of incorporated drug models from corresponding hydrogels. Schwoerer AD; Harling S; Scheibe K; Menzel H; Daniels R Eur J Pharm Biopharm; 2009 Nov; 73(3):351-6. PubMed ID: 19683570 [TBL] [Abstract][Full Text] [Related]
11. Poly(ethylene glycol) methacrylate/dimethacrylate hydrogels for controlled release of hydrophobic drugs. Diramio JA; Kisaalita WS; Majetich GF; Shimkus JM Biotechnol Prog; 2005; 21(4):1281-8. PubMed ID: 16080712 [TBL] [Abstract][Full Text] [Related]
12. Modeling of swelling and drug release behavior of spontaneously forming hydrogels composed of phospholipid polymers. Nam K; Watanabe J; Ishihara K Int J Pharm; 2004 May; 275(1-2):259-69. PubMed ID: 15081156 [TBL] [Abstract][Full Text] [Related]
13. Thermosensitive poly(organophosphazene) hydrogels for a controlled drug delivery. Kang GD; Cheon SH; Khang G; Song SC Eur J Pharm Biopharm; 2006 Jul; 63(3):340-6. PubMed ID: 16527468 [TBL] [Abstract][Full Text] [Related]
14. In vivo and in vitro anti-cancer activity of thermo-sensitive and photo-crosslinkable doxorubicin hydrogels composed of chitosan-doxorubicin conjugates. Cho YI; Park S; Jeong SY; Yoo HS Eur J Pharm Biopharm; 2009 Sep; 73(1):59-65. PubMed ID: 19409990 [TBL] [Abstract][Full Text] [Related]
15. Examination of fabrication conditions of acrylate-based hydrogel formulations for doxorubicin release and efficacy test for hepatocellular carcinoma cell. Bayramoglu G; Gozen D; Ersoy G; Ozalp VC; Akcali KC; Arica MY J Biomater Sci Polym Ed; 2014; 25(7):657-78. PubMed ID: 24580096 [TBL] [Abstract][Full Text] [Related]
16. In vitro drug release studies from the polymeric hydrogels based on HEA and HPMA using 4-[(E)-[(3Z)-3-(4-(acryloyloxy)benzylidene)-2-hexylidene]methyl]phenyl acrylate as a crosslinker. Arun A; Reddy BS Biomaterials; 2005 Apr; 26(10):1185-93. PubMed ID: 15451638 [TBL] [Abstract][Full Text] [Related]
17. Controlled release of curcumin from gelatin hydrogels by the molecular-weight modulation of an oxidized dextran cross-linker. Yan S; Wu S; Zhang J; Zhang S; Huang Y; Zhu H; Li Y; Qi B Food Chem; 2023 Aug; 418():135966. PubMed ID: 36948025 [TBL] [Abstract][Full Text] [Related]
18. Hydroxyethyl starch-based polymers for the controlled release of biomacromolecules from hydrogel microspheres. Wöhl-Bruhn S; Bertz A; Harling S; Menzel H; Bunjes H Eur J Pharm Biopharm; 2012 Aug; 81(3):573-81. PubMed ID: 22579731 [TBL] [Abstract][Full Text] [Related]
19. pH-sensitive micelles self-assembled from multi-arm star triblock co-polymers poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) for controlled anticancer drug delivery. Yang YQ; Zhao B; Li ZD; Lin WJ; Zhang CY; Guo XD; Wang JF; Zhang LJ Acta Biomater; 2013 Aug; 9(8):7679-90. PubMed ID: 23669619 [TBL] [Abstract][Full Text] [Related]
20. Novel injectable and in situ cross-linkable hydrogels of dextran methacrylate and scleroglucan derivatives: preparation and characterization. Corrente F; Abu Amara HM; Pacelli S; Paolicelli P; Casadei MA Carbohydr Polym; 2013 Feb; 92(2):1033-9. PubMed ID: 23399125 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]